RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2016, Volume 443, Pages 222–233 (Mi znsl6265)  

This article is cited in 2 scientific papers (total in 2 papers)

Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results

A. V. Shchegolev

St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.

Key words and phrases: hyperbolic unitary group, elementary subgroup, transvections, parabolic subgroups, standard automorphisms, block-diagonal subgroups, localization.

Full text: PDF file (193 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2017, 222:4, 516–523

Bibliographic databases:

UDC: 513.6
Received: 02.12.2015

Citation: A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results”, Problems in the theory of representations of algebras and groups. Part 29, Zap. Nauchn. Sem. POMI, 443, POMI, St. Petersburg, 2016, 222–233; J. Math. Sci. (N. Y.), 222:4 (2017), 516–523

Citation in format AMSBIB
\Bibitem{Shc16}
\by A.~V.~Shchegolev
\paper Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
\inbook Problems in the theory of representations of algebras and groups. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 443
\pages 222--233
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6265}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507773}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 4
\pages 516--523
\crossref{https://doi.org/10.1007/s10958-017-3319-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014794187}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6265
  • http://mi.mathnet.ru/eng/znsl/v443/p222

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in the classical symplectic group over an arbitrary commutative ring”, St. Petersburg Math. J., 30:6 (2019), 1007–1041  mathnet  crossref  mathscinet  isi  elib
    2. P. B. Gvozdevskii, “Nadgruppy podgrupp Levi I. Sluchai abeleva unipotentnogo radikala”, Algebra i analiz, 31:6 (2019), 79–121  mathnet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:117
    Full text:22
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020