RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2016, Volume 445, Pages 175–180 (Mi znsl6277)  

Inner radius, polarization and circular truncation of the set

V. O. Kuznetsov

Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia

Abstract: The difference of the reduced module $m(B,0)$ of an open set $B$, $0\in B$, and the reduced module $m(B_r,0)$ of its circular truncation $B_r$, where $B_r=B\cap\{|z|<r\}$, is considered. It is proved that in the case of polarization and circular symmetrization this difference does not decrease.

Key words and phrases: reduced module, polarization, symmetrization, Green's function.

Full text: PDF file (156 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2017, 222:5, 641–644

Bibliographic databases:

UDC: 517.54
Received: 12.03.2016

Citation: V. O. Kuznetsov, “Inner radius, polarization and circular truncation of the set”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 175–180; J. Math. Sci. (N. Y.), 222:5 (2017), 641–644

Citation in format AMSBIB
\Bibitem{Kuz16}
\by V.~O.~Kuznetsov
\paper Inner radius, polarization and circular truncation of the set
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 175--180
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6277}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3511161}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 641--644
\crossref{https://doi.org/10.1007/s10958-017-3323-6}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015639847}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6277
  • http://mi.mathnet.ru/eng/znsl/v445/p175

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:68
    Full text:11
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019