RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2016, Volume 445, Pages 181–249 (Mi znsl6278)  

This article is cited in 4 scientific papers (total in 4 papers)

Geometric function theory. Jenkins results. The method of modules of curve families

G. V. Kuz'mina

St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia

Abstract: Results and applications of the method of modules in geometric function theory are presented. The method was originated by J. A. Jenkins,and further development proceeded in works of the Leningrad–St. Petersburg mathematical school. A retrospective description of the origin of the method is given, and the determining role of Jenkins in the development of the method of the extremal metric is pointed out.

Key words and phrases: extremal metric, quadratic differential, trajectory, module of curve family, reduced module, extremal decomposition.

Full text: PDF file (439 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2017, 222:5, 645–689

Bibliographic databases:

UDC: 517.54
Received: 05.05.2016
Language:

Citation: G. V. Kuz'mina, “Geometric function theory. Jenkins results. The method of modules of curve families”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 181–249; J. Math. Sci. (N. Y.), 222:5 (2017), 645–689

Citation in format AMSBIB
\Bibitem{Kuz16}
\by G.~V.~Kuz'mina
\paper Geometric function theory. Jenkins results. The method of modules of curve families
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 181--249
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6278}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3511162}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 645--689
\crossref{https://doi.org/10.1007/s10958-017-3324-5}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015799821}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6278
  • http://mi.mathnet.ru/eng/znsl/v445/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. I. Kalmykov, E. G. Prilepkina, “On the $p$-harmonic Robin radius in the Euclidean space”, J. Math. Sci. (N. Y.), 225:6 (2017), 969–979  mathnet  crossref  mathscinet
    2. R. Kuehnau, “Some remarks on extremal problems in the theory of conformal mappings”, Lobachevskii J. Math., 38:2, SI (2017), 315–321  crossref  mathscinet  zmath  isi  scopus
    3. V. N. Dubinin, A. S. Afanaseva-Grigoreva, “O lemniskatakh ratsionalnykh funktsii”, Dalnevost. matem. zhurn., 17:2 (2017), 201–209  mathnet  elib
    4. V. N. Dubinin, “Some unsolved problems about condenser capacities on the plane”, Complex Analysis and Dynamical Systems: New Trends and Open Problems, Trends in Mathematics, eds. M. Agranovsky, A. Golberg, F. Jacobzon, D. Shoikhet, L. Zalcman, Birkhäuser Verlag Ag, 2018, 81–92  crossref  mathscinet  isi  scopus
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:133
    Full text:38
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019