RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2017, Volume 459, Pages 104–126 (Mi znsl6467)  

Multiplicity of positive solutions to the boundary value problems for fractional Laplacians

N. S. Ustinov

St. Petersburg State University, St. Petersburg, Russia

Abstract: We establish the so-called “multiplicity effect” for the problem $(-\Delta)^su=u^{q-1}$ in the annulus $\Omega_R=B_{R+1}\setminus B_R\in\mathbb R^n$: for each $N\in\mathbb N$ there exists $R_0$ such that for all $R \geq R_0$ this problem has at least $N$ different positive solutions. $(-\Delta)^s$ in this problem stands either for Navier-type or for Dirichlet-type fractional Laplacian. Similar results were proved earlier for the equations with the usual Laplace operator and with the $p$-Laplacian operator.

Key words and phrases: fractional Laplacians, multiplicity of solutions, Navier Laplacian, Dirichlet Laplacian.

Funding Agency Grant Number
Russian Foundation for Basic Research 17-01-00678A


Full text: PDF file (328 kB)
References: PDF file   HTML file

UDC: 517
Received: 25.04.2017

Citation: N. S. Ustinov, “Multiplicity of positive solutions to the boundary value problems for fractional Laplacians”, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Zap. Nauchn. Sem. POMI, 459, POMI, St. Petersburg, 2017, 104–126

Citation in format AMSBIB
\Bibitem{Ust17}
\by N.~S.~Ustinov
\paper Multiplicity of positive solutions to the boundary value problems for fractional Laplacians
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 459
\pages 104--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6467}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6467
  • http://mi.mathnet.ru/eng/znsl/v459/p104

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:44
    Full text:17
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019