RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2017, Volume 462, Pages 93–102 (Mi znsl6498)  

Confluent Heun equation and confluent hypergeometric equation

S. Yu. Slavyanov, A. A. Salatich

St. Petersburg State University, St. Petersburg, Russia

Abstract: The confluent Heun equation and confluent hypergeometric equation are studied in scalar and vector forms with particular emphasis to the role of apparent singularities. The relation to the Painlevé equation is shown.

Key words and phrases: confluent hypergeometric equation, confluent Heun equation, deformed Heun equation, integral symmetries, antiquantization, Painlevé equation.

Full text: PDF file (165 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 232:2, 157–163

Document Type: Article
UDC: 517.289+517.923+517.926
Received: 04.09.2017

Citation: S. Yu. Slavyanov, A. A. Salatich, “Confluent Heun equation and confluent hypergeometric equation”, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Zap. Nauchn. Sem. POMI, 462, POMI, St. Petersburg, 2017, 93–102; J. Math. Sci. (N. Y.), 232:2 (2018), 157–163

Citation in format AMSBIB
\Bibitem{SlaSal17}
\by S.~Yu.~Slavyanov, A.~A.~Salatich
\paper Confluent Heun equation and confluent hypergeometric equation
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 462
\pages 93--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6498}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 2
\pages 157--163
\crossref{https://doi.org/10.1007/s10958-018-3865-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047390281}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6498
  • http://mi.mathnet.ru/eng/znsl/v462/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:58
    Full text:33
    References:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019