RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2018, Volume 469, Pages 64–95 (Mi znsl6606)  

The unimodularity of the induced toric tilings

V. G. Zhuravlevab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Vladimir State University, Vladimir, Russia

Abstract: Induced tilings $\mathcal T=\mathcal T|_\mathrm{Kr}$ of the $d$-dimensional torus $\mathbb T^d$, generated by the embedded karyon $\mathrm{Kr}$, are considered. The operations of differentiation are defined $\sigma\colon\mathcal T\to\mathcal T^\sigma$, as a result we get again induced partitions $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ of the same torus $\mathbb T^d$, generated by the derived karyon $\mathrm{Kr}^\sigma$. In the language of the karyons $\mathrm {Kr}$ the derivations of $\sigma$ reduce to a combination of geometric transformations of the space $\mathbb R^d$. It is proved that if the karyon $\mathrm{Kr}$ is unimodular, then it generates an induced tiling $\mathcal T=\mathcal T|_\mathrm{Kr}$ and the derivative karyon $\mathrm{Kr}^\sigma$ is unimodular again. So there exists the corresponding derivative tiling $\mathcal T^\sigma=\mathcal T|_{\mathrm {Kr}^\sigma}$. Using unimodular karyons one can build an infinite family of induced tilings $\mathcal T=\mathcal T(\alpha,\mathrm{Kr}_*)$ depending on a shift vector $\alpha$ of the torus $\mathbb T^d$ and the initial karyon $\mathrm{Kr}_*$. Two algorithms are presented for constructing such unimodular karyons of $\mathrm{Kr}_*$.

Key words and phrases: shift vector, induced tilings, induced toric tilings, oblique shift, derived karyon, exchange transformation of a torus, derived tilings, contraction along a straight line.

Funding Agency Grant Number
Russian Science Foundation 14-11-00433


Full text: PDF file (307 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2019, 242:4, 509–530

Bibliographic databases:

UDC: 511.3
Received: 08.02.2018

Citation: V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 64–95; J. Math. Sci. (N. Y.), 242:4 (2019), 509–530

Citation in format AMSBIB
\Bibitem{Zhu18}
\by V.~G.~Zhuravlev
\paper The unimodularity of the induced toric tilings
\inbook Algebra and number theory. Part~1
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 469
\pages 64--95
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6606}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3885096}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 242
\issue 4
\pages 509--530
\crossref{https://doi.org/10.1007/s10958-019-04493-6}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072101016}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6606
  • http://mi.mathnet.ru/eng/znsl/v469/p64

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:36
    Full text:5
    References:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020