|
Zap. Nauchn. Sem. POMI, 2018, Volume 469, Pages 64–95
(Mi znsl6606)
|
|
|
|
The unimodularity of the induced toric tilings
V. G. Zhuravlevab a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Vladimir State University, Vladimir, Russia
Abstract:
Induced tilings $\mathcal T=\mathcal T|_\mathrm{Kr}$ of the $d$-dimensional torus $\mathbb T^d$, generated by the embedded karyon $\mathrm{Kr}$, are considered. The operations of differentiation are defined $\sigma\colon\mathcal T\to\mathcal T^\sigma$, as a result we get again induced partitions $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ of the same torus $\mathbb T^d$, generated by the derived karyon $\mathrm{Kr}^\sigma$. In the language of the karyons $\mathrm {Kr}$ the derivations of $\sigma$ reduce to a combination of geometric transformations of the space $\mathbb R^d$. It is proved that if the karyon $\mathrm{Kr}$ is unimodular, then it generates an induced tiling $\mathcal T=\mathcal T|_\mathrm{Kr}$ and the derivative karyon $\mathrm{Kr}^\sigma$ is unimodular again. So there exists the corresponding derivative tiling $\mathcal T^\sigma=\mathcal T|_{\mathrm {Kr}^\sigma}$. Using unimodular karyons one can build an infinite family of induced tilings $\mathcal T=\mathcal T(\alpha,\mathrm{Kr}_*)$ depending on a shift vector $\alpha$ of the torus $\mathbb T^d$ and the initial karyon $\mathrm{Kr}_*$. Two algorithms are presented for constructing such unimodular karyons of $\mathrm{Kr}_*$.
Key words and phrases:
shift vector, induced tilings, induced toric tilings, oblique shift, derived karyon, exchange transformation of a torus, derived tilings, contraction along a straight line.
Full text:
PDF file (307 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2019, 242:4, 509–530
Bibliographic databases:
UDC:
511.3 Received: 08.02.2018
Citation:
V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, Algebra and number theory. Part 1, Zap. Nauchn. Sem. POMI, 469, POMI, St. Petersburg, 2018, 64–95; J. Math. Sci. (N. Y.), 242:4 (2019), 509–530
Citation in format AMSBIB
\Bibitem{Zhu18}
\by V.~G.~Zhuravlev
\paper The unimodularity of the induced toric tilings
\inbook Algebra and number theory. Part~1
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 469
\pages 64--95
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6606}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3885096}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 242
\issue 4
\pages 509--530
\crossref{https://doi.org/10.1007/s10958-019-04493-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072101016}
Linking options:
http://mi.mathnet.ru/eng/znsl6606 http://mi.mathnet.ru/eng/znsl/v469/p64
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 46 | Full text: | 7 | References: | 6 |
|