RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2018, Volume 471, Pages 168–210 (Mi znsl6632)  

Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations

S. A. Nazarovab

a St. Petersburg State University, St. Petersburg, Russia
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We study asymptotics of eigenvalues appearing near the lower edge of a spectral gap of the Dirichlet problem for the Laplace operator in $d$-dimensional periodic waveguide with the singular perturbation of the boundary by creating a hole with a small diameter $\varepsilon$ is studied. Several versions of the structure of the gap edge are considered. As usual the asymptotic formulas are different in the cases $d\geq3$ and $d=2$ where eigenvalues occur at the distances $O(\varepsilon^{2(d-2)})$ or $O(\varepsilon^{2d})$ and $O(|\ln\varepsilon|^{-2})$ or $O(\varepsilon^4)$, respectively, from the gap edge. Other types of singular perturbation of the waveguide surface and other types of boundary conditions are discussed which provide the appearance of eigenvalues near both edges of one or several gaps.

Key words and phrases: periodic waveguide, spectral problems for the Laplace operator, singular perturbation of boundaries, discrete spectrum, asymptotics of eigenvalues.

Funding Agency Grant Number
Russian Science Foundation 17-11-01003


Full text: PDF file (414 kB)
References: PDF file   HTML file

UDC: 517.956.227+517.958
Received: 20.08.2018

Citation: S. A. Nazarov, “Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations”, Mathematical problems in the theory of wave propagation. Part 48, Zap. Nauchn. Sem. POMI, 471, POMI, St. Petersburg, 2018, 168–210

Citation in format AMSBIB
\Bibitem{Naz18}
\by S.~A.~Nazarov
\paper Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations
\inbook Mathematical problems in the theory of wave propagation. Part~48
\serial Zap. Nauchn. Sem. POMI
\yr 2018
\vol 471
\pages 168--210
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6632}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6632
  • http://mi.mathnet.ru/eng/znsl/v471/p168

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:36
    Full text:13
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019