|
Zap. Nauchn. Sem. POMI, 2007, Volume 347, Pages 34–55
(Mi znsl72)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Four-vertex model
N. M. Bogolyubov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Exactly solvable four-vertex model is considered on a square
grid with the different boundary conditions. The application of
the Algebraic Bethe Ansatz method allows to calculate the
partition function of the model and to establish the connection of
the scalar product of the state vectors with the generating
function of the column and raw strict boxed plane partitions.
The tiling model on a periodic grid is discussed.
Full text:
PDF file (357 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2008, 151:2, 2816–2828
Bibliographic databases:
UDC:
517.9 Received: 18.06.2007
Citation:
N. M. Bogolyubov, “Four-vertex model”, Questions of quantum field theory and statistical physics. Part 20, Zap. Nauchn. Sem. POMI, 347, POMI, St. Petersburg, 2007, 34–55; J. Math. Sci. (N. Y.), 151:2 (2008), 2816–2828
Citation in format AMSBIB
\Bibitem{Bog07}
\by N.~M.~Bogolyubov
\paper Four-vertex model
\inbook Questions of quantum field theory and statistical physics. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 347
\pages 34--55
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl72}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2458883}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 151
\issue 2
\pages 2816--2828
\crossref{https://doi.org/10.1007/s10958-008-9000-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249102627}
Linking options:
http://mi.mathnet.ru/eng/znsl72 http://mi.mathnet.ru/eng/znsl/v347/p34
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
N. M. Bogolyubov, “Five vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21:3 (2010), 407–421
-
I. N. Burenev, A. G. Pronko, “Kvantovye gamiltoniany porozhdaemye $R$-matritsei pyativershinnoi modeli”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 27, Zap. nauchn. sem. POMI, 494, POMI, SPb., 2020, 103–124
|
Number of views: |
This page: | 219 | Full text: | 71 | References: | 26 |
|