|
Zap. Nauchn. Sem. POMI, 2004, Volume 312, Pages 150–164
(Mi znsl778)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem
V. L. Levin Central Economics and Mathematics Institute, RAS
Abstract:
Optimality conditions are given in the Monge–Kantorovich and Monge problems, and exact solutions to several classic two-dimensional problems are obtained.
Full text:
PDF file (238 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2006, 133:4, 1456–1463
Bibliographic databases:
UDC:
517.97 Received: 23.03.2004
Citation:
V. L. Levin, “Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem”, Representation theory, dynamical systems. Part XI, Special issue, Zap. Nauchn. Sem. POMI, 312, POMI, St. Petersburg, 2004, 150–164; J. Math. Sci. (N. Y.), 133:4 (2006), 1456–1463
Citation in format AMSBIB
\Bibitem{Lev04}
\by V.~L.~Levin
\paper Optimality conditions and exact solutions to the two-dimensional Monge--Kantorovich problem
\inbook Representation theory, dynamical systems. Part~XI
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 312
\pages 150--164
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl778}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2117888}
\zmath{https://zbmath.org/?q=an:1099.49028}
\elib{https://elibrary.ru/item.asp?id=9129086}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 4
\pages 1456--1463
\crossref{https://doi.org/10.1007/s10958-006-0061-6}
\elib{https://elibrary.ru/item.asp?id=13529436}
Linking options:
http://mi.mathnet.ru/eng/znsl778 http://mi.mathnet.ru/eng/znsl/v312/p150
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Rigoberto Gabriel J., Gonzalez-Hernandez J., Lopez-Martinez R.R., “Numerical approximations to the mass transfer problem on compact spaces”, IMA J Numer Anal, 30:4 (2010), 1121–1136
-
V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890
|
Number of views: |
This page: | 257 | Full text: | 102 | References: | 42 |
|