|
Zap. Nauchn. Sem. POMI, 2004, Volume 312, Pages 165–187
(Mi znsl779)
|
|
|
|
On computer-aided solving differential equations and stability study of markets
D. A. Leites Max Planck Institute for Mathematics in the Sciences
Abstract:
For any nonholonomic manifold, i.e., a manifold with nonintegrable distribution, I define an analog of the Riemann curvature tensor and refer to Grozman's package SuperLie with the help of which the tensor had been computed in several cases. Being an analog of the usual curvature tensor this invariant characterizes (in)stability of any nonholonomic dynamical system, in particular, of markets.
Full text:
PDF file (268 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2006, 133:4, 1464–1476
Bibliographic databases:
UDC:
512.66+517.951+519.677 Received: 14.04.2004
Language:
Citation:
D. A. Leites, “On computer-aided solving differential equations and stability study of markets”, Representation theory, dynamical systems. Part XI, Special issue, Zap. Nauchn. Sem. POMI, 312, POMI, St. Petersburg, 2004, 165–187; J. Math. Sci. (N. Y.), 133:4 (2006), 1464–1476
Citation in format AMSBIB
\Bibitem{Lei04}
\by D.~A.~Leites
\paper On computer-aided solving differential equations and stability study of markets
\inbook Representation theory, dynamical systems. Part~XI
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 312
\pages 165--187
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2117889}
\zmath{https://zbmath.org/?q=an:1114.37037}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 4
\pages 1464--1476
\crossref{https://doi.org/10.1007/s10958-006-0062-5}
Linking options:
http://mi.mathnet.ru/eng/znsl779 http://mi.mathnet.ru/eng/znsl/v312/p165
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 229 | Full text: | 73 | References: | 32 |
|