RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2007, Volume 347, Pages 187–213 (Mi znsl81)  

Parabolic twists for linear algebras $A_{n-1}$

V. D. Lyakhovsky

Saint-Petersburg State University

Abstract: New solutions of twist equations for universal enveloping algebras $U(A_{n-1})$ are found. They can be presented as products of full chains of extended Jordanian twists $\mathcal F_{\widehat{ch}}$, Abelian factors (“rotations”) $\mathcal F^R$ and sets of quasi-Jordanian twists $\mathcal F^{\widehat J}$. The latter are the generalizations of Jordanian twists (with carrier $b^2$) for special deformed extensions of the Hopf algebra $U(b^2)$. The carrier subalgebra $g_{\mathcal P}$ for the composition $\mathcal F_{\mathcal P}=\mathcal F^{\widehat J}\mathcal F^R\mathcal F_{\widehat{ch}}$ is a nonminimal parabolic subalgebra in $A_{n-1}$, $g_{\mathcal P}\cap\mathbb N_g^-\ne\varnothing$. The parabolic twisting elements $\mathcal F_{\mathcal P}$ are obtained in the explicit form. The details of the construction are illustrated by considering the examples $n=4$ and $n=11$.

Full text: PDF file (294 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2008, 151:2, 2907–2923

Bibliographic databases:

UDC: 517.9, 512.81
Received: 13.07.2007
Language:

Citation: V. D. Lyakhovsky, “Parabolic twists for linear algebras $A_{n-1}$”, Questions of quantum field theory and statistical physics. Part 20, Zap. Nauchn. Sem. POMI, 347, POMI, St. Petersburg, 2007, 187–213; J. Math. Sci. (N. Y.), 151:2 (2008), 2907–2923

Citation in format AMSBIB
\Bibitem{Lya07}
\by V.~D.~Lyakhovsky
\paper Parabolic twists for linear algebras $A_{n-1}$
\inbook Questions of quantum field theory and statistical physics. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 347
\pages 187--213
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl81}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2458892}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 151
\issue 2
\pages 2907--2923
\crossref{https://doi.org/10.1007/s10958-008-9008-4}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249138662}


Linking options:
  • http://mi.mathnet.ru/eng/znsl81
  • http://mi.mathnet.ru/eng/znsl/v347/p187

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:122
    Full text:29
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020