RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2004, Volume 308, Pages 161–181 (Mi znsl833)  

This article is cited in 4 scientific papers (total in 4 papers)

Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences

Abstract: For second order derivatives of eigenvectors in a thin anisotropic heterogeneous plate $\Omega_h$, we derive estimates of the weighted $L_2$-norms with the majorants whose dependence on both, the plate thickness $h$ and the eigenvalue number, are expressed explicitly. These estimates keep the asymptotic sharpness along the whole spectrum while, inside its low-frequency range, the majorants remain bounded as $h\to+0$. The latter is rather unexpected fact because, for the first eigenfunction $u^1$ of the alike boundary value problem for a scalar second order differential operator with variable coefficients, the norm $\Vert\nabla_x^2u^0;L_2(\Omega_h)\Vert$ is of order $h^{-1}$ and grows as $h$ vanishes.

Full text: PDF file (295 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 132:1, 91–102

Bibliographic databases:

UDC: 517.946
Received: 02.03.2004

Citation: S. A. Nazarov, “Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness”, Mathematical problems in the theory of wave propagation. Part 33, Zap. Nauchn. Sem. POMI, 308, POMI, St. Petersburg, 2004, 161–181; J. Math. Sci. (N. Y.), 132:1 (2006), 91–102

Citation in format AMSBIB
\Bibitem{Naz04}
\by S.~A.~Nazarov
\paper Estimates for second order derivatives of eigenvectors in thin anisotropic plates with variable thickness
\inbook Mathematical problems in the theory of wave propagation. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 308
\pages 161--181
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl833}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2092617}
\zmath{https://zbmath.org/?q=an:1087.35090}
\elib{http://elibrary.ru/item.asp?id=9128666}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 132
\issue 1
\pages 91--102
\crossref{https://doi.org/10.1007/s10958-005-0478-3}
\elib{http://elibrary.ru/item.asp?id=13511119}


Linking options:
  • http://mi.mathnet.ru/eng/znsl833
  • http://mi.mathnet.ru/eng/znsl/v308/p161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Nazarov, “Korn's inequalities for junctions of elastic bodies with thin plates”, Siberian Math. J., 46:4 (2005), 695–706  mathnet  crossref  mathscinet  zmath  isi  elib
    2. S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. Nazarov S.A., Perez E., Taskinen J., “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Am. Math. Soc., 368:7 (2016), 4787–4829  crossref  mathscinet  zmath  isi  scopus
    4. Buttazzo G., Cardone G., Nazarov S.A., “Thin Elastic Plates Supported Over Small Areas. i: Korn'S Inequalities and Boundary Layers”, J. Convex Anal., 23:2 (2016), 347–386  mathscinet  zmath  isi
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:184
    Full text:47
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019