Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2014, Volume 54, Number 8, Pages 1368–1378 (Mi zvmmf10082)  

Minimax problems of discrete optimization invariant under majority operators

E. V. Vodolazskiia, B. Flachb, M. I. Schlesingera

a International Scientific Educational Center, pr. Akademika Glushkova 40, Kiev, 03680, Ukraine
b Czech Technical University in Prague, Zikova 4, Prague, 16636, Czech Republic

Abstract: A special class of discrete optimization problems that are stated as a minimax modification of the constraint satisfaction problem is studied. The minimax formulation of the problem generalizes the classical problem to realistic situations where the constraints order the elements of the set by the degree of their feasibility, rather than defining a dichotomy between feasible and infeasible subsets. The invariance of this ordering under an operator is defined, and the discrete minimization of functions invariant under majority operators is proved to have polynomial complexity. A particular algorithm for this minimization is described.

Key words: discrete optimization problem, minimax modification, solution algorithm.

DOI: https://doi.org/10.7868/S004446691408016X

Full text: PDF file (233 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2014, 54:8, 1327–1336

Bibliographic databases:

UDC: 519.218.43
MSC: 49K35
Received: 21.10.2013
Revised: 04.02.2014

Citation: E. V. Vodolazskii, B. Flach, M. I. Schlesinger, “Minimax problems of discrete optimization invariant under majority operators”, Zh. Vychisl. Mat. Mat. Fiz., 54:8 (2014), 1368–1378; Comput. Math. Math. Phys., 54:8 (2014), 1327–1336

Citation in format AMSBIB
\Bibitem{VodFlaSch14}
\by E.~V.~Vodolazskii, B.~Flach, M.~I.~Schlesinger
\paper Minimax problems of discrete optimization invariant under majority operators
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 8
\pages 1368--1378
\mathnet{http://mi.mathnet.ru/zvmmf10082}
\crossref{https://doi.org/10.7868/S004446691408016X}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3250881}
\zmath{https://zbmath.org/?q=an:06391174}
\elib{https://elibrary.ru/item.asp?id=21803844}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 8
\pages 1327--1336
\crossref{https://doi.org/10.1134/S0965542514080144}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000341085500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907312815}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10082
  • http://mi.mathnet.ru/eng/zvmmf/v54/i8/p1368

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:221
    Full text:128
    References:39
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021