Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2014, Volume 54, Number 9, Pages 1455–1464 (Mi zvmmf10087)  

This article is cited in 3 scientific papers (total in 3 papers)

Comparison of two Pareto frontier approximations

V. E. Berezkin, A. V. Lotov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: A method for comparing two approximations to the multidimensional Pareto frontier in nonconvex nonlinear multicriteria optimization problems, namely, the inclusion functions method is described. A feature of the method is that Pareto frontier approximations are compared by computing and comparing inclusion functions that show which fraction of points of one Pareto frontier approximation is contained in the neighborhood of the Edgeworth–Pareto hull approximation for the other Pareto frontier.

Key words: multicriteria optimization, comparison of Pareto frontier approximations, Edgeworth–Pareto hull, inclusion function.

DOI: https://doi.org/10.7868/S004446691409004X

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2014, 54:9, 1402–1410

Bibliographic databases:

UDC: 519.626
Received: 26.12.2013
Revised: 24.03.2014

Citation: V. E. Berezkin, A. V. Lotov, “Comparison of two Pareto frontier approximations”, Zh. Vychisl. Mat. Mat. Fiz., 54:9 (2014), 1455–1464; Comput. Math. Math. Phys., 54:9 (2014), 1402–1410

Citation in format AMSBIB
\Bibitem{BerLot14}
\by V.~E.~Berezkin, A.~V.~Lotov
\paper Comparison of two Pareto frontier approximations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 9
\pages 1455--1464
\mathnet{http://mi.mathnet.ru/zvmmf10087}
\crossref{https://doi.org/10.7868/S004446691409004X}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3258611}
\elib{https://elibrary.ru/item.asp?id=21826103}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 9
\pages 1402--1410
\crossref{https://doi.org/10.1134/S0965542514090048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000342213000004}
\elib{https://elibrary.ru/item.asp?id=23992676}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907661991}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10087
  • http://mi.mathnet.ru/eng/zvmmf/v54/i9/p1455

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. T. Abbas, D. Yu. Pimenov, I. N. Erdakov, T. Mikolajczyk, E. A. El Danaf, M. A. Taha, “Minimization of turning time for high-strength steel with a given surface roughness using the Edgeworth-Pareto optimization method”, Int. J. Adv. Manuf. Technol., 93:5-8 (2017), 2375–2392  crossref  isi  scopus
    2. A. Palacio, B. Adenso-Diaz, S. Lozano, “Analysing the factors that influence the Pareto frontier of a bi-objective supply chain design problem”, Int. Trans. Oper. Res., 25:6 (2018), 1717–1738  crossref  isi  scopus
    3. Santana Rodrigues V.F., Ferreira J.R., de Paiva A.P., Paes de Souza L.G., Dutra Pereira R.B., Brandrao L.C., “Robust Modeling and Optimization of Borehole Enlarging By Helical Milling of Aluminum Alloy Al7075”, Int. J. Adv. Manuf. Technol., 100:9-12 (2019), 2583–2599  crossref  mathscinet  isi  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:163
    Full text:65
    References:26
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021