RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2015, Volume 55, Number 3, Pages 512–522 (Mi zvmmf10177)  

This article is cited in 9 scientific papers (total in 9 papers)

Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes

V. I. Golubev, I. B. Petrov, N. I. Khokhlov, K. I. Shul'ts

Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia

Abstract: Wave propagation in fractured rock in the course of seismic exploration is studied. The grid-characteristic method on hexahedral meshes is extended to the case of an elastic medium with empty and fluid-saturated cracks. The crack effect on wave propagation in the medium is taken into account by introducing cracks at the stage of grid generation with boundary conditions and conditions on the crack edges specified in explicit form. This method is used to obtain wave patterns near an extended inclined crack. The problem of numerically computing the seismic effect produced by a cluster of vertical and subvertical cracks is given in a complete three-dimensional formulation. The structure of the resulting pattern and the influence exerted by the crack-filling substance on the signal recorded on the surface are examined.

Key words: hyperbolic equations, grid-characteristic numerical method, mathematical simulation, fractured media.

DOI: https://doi.org/10.7868/S0044466915030096

Full text: PDF file (785 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2015, 55:3, 509–518

Bibliographic databases:

UDC: 519.634
MSC: Primary 74L05; Secondary 74J05, 74R10
Received: 27.05.2014

Citation: V. I. Golubev, I. B. Petrov, N. I. Khokhlov, K. I. Shul'ts, “Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 512–522; Comput. Math. Math. Phys., 55:3 (2015), 509–518

Citation in format AMSBIB
\Bibitem{GolPetKho15}
\by V.~I.~Golubev, I.~B.~Petrov, N.~I.~Khokhlov, K.~I.~Shul'ts
\paper Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 3
\pages 512--522
\mathnet{http://mi.mathnet.ru/zvmmf10177}
\crossref{https://doi.org/10.7868/S0044466915030096}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3334449}
\zmath{https://zbmath.org/?q=an:06458226}
\elib{http://elibrary.ru/item.asp?id=22995546}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 3
\pages 509--518
\crossref{https://doi.org/10.1134/S0965542515030082}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000352701800014}
\elib{http://elibrary.ru/item.asp?id=24023977}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928162631}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10177
  • http://mi.mathnet.ru/eng/zvmmf/v55/i3/p512

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. 97, no. 2, 2018, 184–187  crossref  zmath  isi
    2. 96, no. 2, 2017, 514–516  crossref  mathscinet  zmath  isi
    3. A. Favorskaya, I. Petrov, A. Grinevskiy, “Numerical simulation of fracturing in geological medium”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, ed. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1216–1224  crossref  isi
    4. P. Stognii, D. Petrov, N. Khokhlov, A. Favorskaya, “Numerical modeling of influence of ice formations under seismic impacts based on grid-characteristic method”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, eds. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1497–1505  crossref  isi
    5. V. I. Golubev, R. I. Gilyazutdinov, I. B. Petrov, N. I. Khokhlov, A. V. Vasyukov, “Simulation of dynamic processes in three-dimensional layered fractured media with the use of the grid-characteristic numerical method”, J. Appl. Mech. Tech. Phys., 58:3 (2017), 539–545  crossref  mathscinet  isi
    6. V. I. Golubev, N. I. Khokhlov, “Otsenka anizotropii seismicheskogo otklika ot treschinovatykh geologicheskikh ob'ektov”, Kompyuternye issledovaniya i modelirovanie, 10:2 (2018), 231–240  mathnet  crossref
    7. A. V. Favorskaya, S. V. Kabisov, I. B. Petrov, “Modeling of ultrasonic waves in fractured rails with an explicit approach”, Dokl. Math., 98:1 (2018), 401–404  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    8. A. O. Kazakov, “On the calculation of border and contact nodes by grid-characteristic method on non-periodic tetrahedral grids”, Num. Anal. Appl., 11:4 (2018), 298–310  mathnet  crossref  crossref  isi  elib
    9. V. I. Golubev, O. Ya. Voinov, I. B. Petrov, “Seismic imaging of fractured elastic media on the basis of the grid-characteristic method”, Comput. Math. Math. Phys., 58:8 (2018), 1309–1315  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:264
    Full text:64
    References:44
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020