Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2015, Volume 55, Number 3, Pages 523–529 (Mi zvmmf10178)  

Bifurcation model of the laminar-turbulent transition in simple flows

I. V. Eriklintsev, S. A. Kozlov

Institute for Computer-Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, Moscow, 123056, Russia

Abstract: For plane channel flows with a constant pressure gradient and for constant-pressure shear layer flows, a simple closure scheme for the Reynolds-averaged Navier–Stokes equations is proposed as an alternative to eddy-viscosity-based models. The closure scheme makes it possible to compute flows at any Reynolds number, including near the laminar-turbulent transition.

Key words: shear layer, two-dimensional Couette flow, laminar-turbulent transition, bifurcation model of turbulent flow.

DOI: https://doi.org/10.7868/S0044466915030059

Full text: PDF file (271 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2015, 55:3, 519–525

Bibliographic databases:

UDC: 519.634
MSC: 76F06
Received: 12.08.2014

Citation: I. V. Eriklintsev, S. A. Kozlov, “Bifurcation model of the laminar-turbulent transition in simple flows”, Zh. Vychisl. Mat. Mat. Fiz., 55:3 (2015), 523–529; Comput. Math. Math. Phys., 55:3 (2015), 519–525

Citation in format AMSBIB
\Bibitem{EriKoz15}
\by I.~V.~Eriklintsev, S.~A.~Kozlov
\paper Bifurcation model of the laminar-turbulent transition in simple flows
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 3
\pages 523--529
\mathnet{http://mi.mathnet.ru/zvmmf10178}
\crossref{https://doi.org/10.7868/S0044466915030059}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3334450}
\zmath{https://zbmath.org/?q=an:06458227}
\elib{https://elibrary.ru/item.asp?id=22995547}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 3
\pages 519--525
\crossref{https://doi.org/10.1134/S0965542515030057}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000352701800015}
\elib{https://elibrary.ru/item.asp?id=24023935}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928156518}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10178
  • http://mi.mathnet.ru/eng/zvmmf/v55/i3/p523

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:128
    Full text:31
    References:29
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021