RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2015, Volume 55, Number 5, Pages 758–775 (Mi zvmmf10200)  

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control of linear systems with interval constraints

V. M. Aleksandrov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090, Russia

Abstract: For linear systems with interval constraints, a method for computing a time-optimal control is proposed. The method is based on transforming a quasi-optimal control. The properties and features of the quasi-optimal control are examined. A technique is described for dividing the domain of initial conditions into reachable sets over different times and for approximating each set by a family of hyperplanes. An iterative method for computing an optimal control with interval constraints is developed. The convergence of the method is proved, and a sufficient condition for the convergence of the computational process is obtained. The radius of local quadratic convergence is found. Numerical results are presented.

Key words: optimal control, quasi-optimal control, interval constraints, time-optimal control, reachable set, adjoint system, convergence, iterative process.

DOI: https://doi.org/10.7868/S004446691505004X

Full text: PDF file (302 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2015, 55:5, 749–765

Bibliographic databases:

Document Type: Article
UDC: 519.626
MSC: Primary 49M20; Secondary 49M05
Received: 07.08.2014
Revised: 16.11.2014

Citation: V. M. Aleksandrov, “Optimal control of linear systems with interval constraints”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015), 758–775; Comput. Math. Math. Phys., 55:5 (2015), 749–765

Citation in format AMSBIB
\Bibitem{Ale15}
\by V.~M.~Aleksandrov
\paper Optimal control of linear systems with interval constraints
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 5
\pages 758--775
\mathnet{http://mi.mathnet.ru/zvmmf10200}
\crossref{https://doi.org/10.7868/S004446691505004X}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3350407}
\zmath{https://zbmath.org/?q=an:06458248}
\elib{http://elibrary.ru/item.asp?id=23299901}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 5
\pages 749--765
\crossref{https://doi.org/10.1134/S0965542515050048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000355213800003}
\elib{http://elibrary.ru/item.asp?id=24039822}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930207450}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10200
  • http://mi.mathnet.ru/eng/zvmmf/v55/i5/p758

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. B. Rudnitskii, N. N. Dikhtyaruk, “Interaction between an infinite stringer and two identical prestressed strips: contact problem”, Int. Appl. Mech., 53:2 (2017), 149–155  crossref  mathscinet  isi
    2. V. M. Aleksandrov, “Optimal resource consumption control with interval restrictions”, J. Appl. Industr. Math., 12:2 (2018), 201–212  mathnet  crossref  crossref  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:143
    Full text:15
    References:38
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019