RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2015, Volume 55, Number 9, Pages 1474–1485 (Mi zvmmf10260)  

This article is cited in 2 scientific papers (total in 2 papers)

Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes

A. Zh. Zhubanysheva, N. Temirgaliev

Gumilev Eurasian National University, ul. Satpayev 2, Astana, 010008, Kazakhstan

Abstract: The computational (numerical) diameter is used to completely solve the problem of approximate differentiation of a function given inexact information in the form of an arbitrary finite set of trigonometric Fourier coefficients.

Key words: approximate differentiation, informative cardinality of a given class of functionals, recovery from inexact information, limiting error, computational (numerical) diameter, massive limiting error.

DOI: https://doi.org/10.7868/S0044466915090173

Full text: PDF file (612 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2015, 55:9, 1432–1443

Bibliographic databases:

UDC: 519.642.8
Received: 03.03.2014
Revised: 18.02.2015

Citation: A. Zh. Zhubanysheva, N. Temirgaliev, “Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes”, Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015), 1474–1485; Comput. Math. Math. Phys., 55:9 (2015), 1432–1443

Citation in format AMSBIB
\Bibitem{ZhuTem15}
\by A.~Zh.~Zhubanysheva, N.~Temirgaliev
\paper Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 9
\pages 1474--1485
\mathnet{http://mi.mathnet.ru/zvmmf10260}
\crossref{https://doi.org/10.7868/S0044466915090173}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3396522}
\elib{http://elibrary.ru/item.asp?id=24045304}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 9
\pages 1432--1443
\crossref{https://doi.org/10.1134/S0965542515090146}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000361438500002}
\elib{http://elibrary.ru/item.asp?id=25228816}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941948724}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10260
  • http://mi.mathnet.ru/eng/zvmmf/v55/i9/p1474

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. Temirgaliev, A. Zhubanysheva, “Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications”, Russian Math. (Iz. VUZ), 61:3 (2017), 77–82  mathnet  crossref  isi
    2. N. Temirgaliev, A. Zh. Zhubanysheva, “Kompyuternyi (vychislitelnyi) poperechnik v kontekste obschei teorii vosstanovleniya”, Izv. vuzov. Matem., 2019, no. 1, 89–97  mathnet  crossref
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:255
    Full text:56
    References:60
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020