|
This article is cited in 3 scientific papers (total in 3 papers)
Sufficient optimality conditions for a class of nonconvex control problems
E. V. Aksenyushkinaa, V. A. Srochkob a Baikal State University of Economics and Law, ul. Lenina 11, Irkutsk, 664015, Russia
b Irkutsk State University, ul. K. Marksa 1, Irkutsk, 664003, Russia
Abstract:
The optimization of a bilinear-quadratic functional with respect to a linear phase system with a modulus control constraint is considered. Special representations of the cost functional are used to obtain sufficient optimality conditions for certain classes of extremal controls in the form of sign definiteness inequalities for functions of one and two variables. These conditions are as easy to implement numerically as verifying controls for extremeness.
Key words:
linear phase system, nonconvex optimization problem, extremal controls, sufficient optimality conditions.
DOI:
https://doi.org/10.7868/S004446691510004X
Full text:
PDF file (384 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 2015, 55:10, 1642–1652
Bibliographic databases:
UDC:
519.626 Received: 15.12.2014
Citation:
E. V. Aksenyushkina, V. A. Srochko, “Sufficient optimality conditions for a class of nonconvex control problems”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015), 1670–1680; Comput. Math. Math. Phys., 55:10 (2015), 1642–1652
Citation in format AMSBIB
\Bibitem{AksSro15}
\by E.~V.~Aksenyushkina, V.~A.~Srochko
\paper Sufficient optimality conditions for a class of nonconvex control problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 10
\pages 1670--1680
\mathnet{http://mi.mathnet.ru/zvmmf10281}
\crossref{https://doi.org/10.7868/S004446691510004X}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3412531}
\elib{https://elibrary.ru/item.asp?id=24149957}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 10
\pages 1642--1652
\crossref{https://doi.org/10.1134/S0965542515100048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363056200005}
\elib{https://elibrary.ru/item.asp?id=24961863}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944460018}
Linking options:
http://mi.mathnet.ru/eng/zvmmf10281 http://mi.mathnet.ru/eng/zvmmf/v55/i10/p1670
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. G. Antonik, V. A. Srochko, “Optimality conditions of the maximum principle type in bilinear control problems”, Comput. Math. Math. Phys., 56:12 (2016), 2023–2034
-
V. A. Srochko, “Prosteishaya nevypuklaya zadacha upravleniya. Printsip maksimuma i dostatochnye usloviya optimalnosti”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 184–194
-
E. V. Aksenyushkina, “Optimality conditions in a problem of linear controlled system with bilinear functional”, Russian Math. (Iz. VUZ), 62:7 (2018), 53–57
|
Number of views: |
This page: | 163 | Full text: | 27 | References: | 73 | First page: | 11 |
|