RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2015, Volume 55, Number 10, Pages 1727–1740 (Mi zvmmf10286)  

An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids

N. I. Kokonkov, O. V. Nikolaeva

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russia

Abstract: A two-step iterative $\mathrm{KP}_1$ method for solving systems of grid equations that approximate the integro-differential transport equation in $\mathrm{3D}$ domains on unstructured grids using nodal $\mathrm{S_N}$ methods is described. Results of testing the efficiency of the proposed method in solving benchmark problems of reactor protection on tetrahedral grids are presented.

Key words: transport equation, $\mathrm{3D}$ unstructured grids, iterative $\mathrm{KP}_1$ and DSA methods.

DOI: https://doi.org/10.7868/S0044466915100154

Full text: PDF file (500 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2015, 55:10, 1698–1712

Bibliographic databases:

UDC: 519.634
Received: 27.01.2015

Citation: N. I. Kokonkov, O. V. Nikolaeva, “An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids”, Zh. Vychisl. Mat. Mat. Fiz., 55:10 (2015), 1727–1740; Comput. Math. Math. Phys., 55:10 (2015), 1698–1712

Citation in format AMSBIB
\Bibitem{KokNik15}
\by N.~I.~Kokonkov, O.~V.~Nikolaeva
\paper An iterative $\mathrm{KP}_1$ method for solving the transport equation in $\mathrm{3D}$ domains on unstructured grids
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 10
\pages 1727--1740
\mathnet{http://mi.mathnet.ru/zvmmf10286}
\crossref{https://doi.org/10.7868/S0044466915100154}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3412536}
\elib{http://elibrary.ru/item.asp?id=24149962}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 10
\pages 1698--1712
\crossref{https://doi.org/10.1134/S0965542515100140}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000363056200010}
\elib{http://elibrary.ru/item.asp?id=24961756}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944450768}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10286
  • http://mi.mathnet.ru/eng/zvmmf/v55/i10/p1727

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:138
    Full text:29
    References:70
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019