|
This article is cited in 17 scientific papers (total in 17 papers)
On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force
A. A. Zlotnik Department of Mathematics, Faculty of Economics Sciences, National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russia
Abstract:
A multidimensional barotropic quasi-gasdynamic system of equations in the form of mass and momentum conservation laws with a general gas equation of state $p=p(\rho)$ with $p'(\rho)>0$ and a potential body force is considered. For this system, two new symmetric spatial discretizations on nonuniform rectangular grids are constructed (in which the density and velocity are defined on the basic grid, while the components of the regularized mass flux and the viscous stress tensor are defined on staggered grids). These discretizations involve nonstandard approximations for $\nabla p(\rho)$, $\mathrm{div}(\rho\mathbf{u})$, and $\rho$. As a result, a discrete total mass conservation law and a discrete energy inequality guaranteeing that the total energy does not grow with time can be derived. Importantly, these discretizations have the additional property of being well-balanced for equilibrium solutions. Another conservative discretization is discussed in which all mass flux components and viscous stresses are defined on the same grid. For the simpler barotropic quasi-hydrodynamic system of equations, the corresponding simplifications of the constructed discretizations have similar properties.
Key words:
viscous compressible Navier–Stokes equations, quasi-gasdynamic system of equations, potential body force, spatial discretization, energy balance equation, well balanced property.
DOI:
https://doi.org/10.7868/S0044466916020186
Full text:
PDF file (294 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 2016, 56:2, 303–319
Bibliographic databases:
UDC:
517.958:533.7 Received: 02.06.2015
Citation:
A. A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016), 301–317; Comput. Math. Math. Phys., 56:2 (2016), 303–319
Citation in format AMSBIB
\Bibitem{Zlo16}
\by A.~A.~Zlotnik
\paper On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 2
\pages 301--317
\mathnet{http://mi.mathnet.ru/zvmmf10346}
\crossref{https://doi.org/10.7868/S0044466916020186}
\elib{https://elibrary.ru/item.asp?id=25343618}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 2
\pages 303--319
\crossref{https://doi.org/10.1134/S0965542516020160}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373669000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962749795}
Linking options:
http://mi.mathnet.ru/eng/zvmmf10346 http://mi.mathnet.ru/eng/zvmmf/v56/i2/p301
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. V. Bulatov, T. G. Elizarova, “Regularized shallow water equations for numerical simulation of flows with a moving shoreline”, Comput. Math. Math. Phys., 56:4 (2016), 661–679
-
V. A. Balashov, A. A. Zlotnik, E. B. Savenkov, “Issledovanie barotropnoi kvazigidrodinamicheskoi modeli dvukhfaznoi smesi s uchetom poverkhnostnykh effektov”, Preprinty IPM im. M. V. Keldysha, 2016, 089, 25 pp.
-
M. A. Istomina, T. G. Elizarova, “Kvazigazodinamicheskii algoritm dlya polyarnoi sistemy koordinat i primer chislennogo modelirovaniya neustoichivostei v akkretsionnom diske”, Preprinty IPM im. M. V. Keldysha, 2016, 092, 25 pp.
-
V. A. Balashov, “Chislennoe modelirovanie dvumernykh techenii umerenno-razrezhennogo gaza v oblastyakh so slozhnoi geometriei”, Preprinty IPM im. M. V. Keldysha, 2016, 104, 24 pp.
-
A. A. Zlotnik, “On new spatial discretization of the multidimensional quasi-gasdynamic system of equations with nondecreasing total entropy”, Dokl. Math., 94:1 (2016), 423–429
-
T. G. Elizarova, A. A. Zlotnik, M. A. Istomina, “O dvumernom chislennom KGD modelirovanii spiralno-vikhrevykh struktur v akkretsionnykh gazovykh diskakh”, Preprinty IPM im. M. V. Keldysha, 2017, 001, 30 pp.
-
A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706–725
-
V. A. Balashov, A. A. Zlotnik, E. B. Savenkov, “Chislennyi algoritm dlya rascheta trekhmernykh dvukhfaznykh techenii s poverkhnostnymi effektami v oblastyakh s vokselnoi geometriei”, Preprinty IPM im. M. V. Keldysha, 2017, 091, 28 pp.
-
V. A. Balashov, V. E. Borisov, “Algoritm rascheta trekhmernykh techenii umerenno-razrezhennogo gaza v oblastyakh s vokselnoi geometriei”, Preprinty IPM im. M. V. Keldysha, 2017, 099, 24 pp.
-
V. Balashov, A. Zlotnik, E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface”, Russ. J. Numer. Anal. Math. Model, 32:6 (2017), 347–358
-
V. A. Balashov, “Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media”, Math. Models Comput. Simul., 10:4 (2018), 483–493
-
A. Zlotnik, “On the energy dissipative spatial discretization of the barotropic quasi-gasdynamic and compressible Navier–Stokes equations in polar coordinates”, Russ. J. Numer. Anal. Math. Model, 33:3 (2018), 199–210
-
V. A. Balashov, “Pryamoe modelirovanie mikrotechenii umerenno-razrezhennogo gaza v obraztsakh gornykh porod”, Matem. modelirovanie, 30:9 (2018), 3–20
-
T. G. Elizarova, A. V. Ivanov, “Regularized equations for numerical simulation of flows in the two-layer shallow water approximation”, Comput. Math. Math. Phys., 58:5 (2018), 714–734
-
A. Zlotnik, T. Lomonosov, “On conditions for weak conservativeness of regularized explicit finite-difference schemes for 1D barotropic gas dynamics equations”, Differential and Difference Equations With Applications, Springer Proceedings in Mathematics & Statistics, 230, eds. S. Pinelas, T. Caraballo, P. Kloeden, J. Graef, Springer, 2018, 635–647
-
Zlotnik A., “On l-2-Dissipativity of Linearized Explicit Finite-Difference Schemes With a Regularization on a Non-Uniform Spatial Mesh For the 1D Gas Dynamics Equations”, Appl. Math. Lett., 92 (2019), 115–120
-
Balashov V. Savenkov E. Zlotnik A., “Numerical Method For 3D Two-Component Isothermal Compressible Flows With Application to Digital Rock Physics”, Russ. J. Numer. Anal. Math. Model, 34:1 (2019), 1–13
|
Number of views: |
This page: | 159 | Full text: | 28 | References: | 63 | First page: | 5 |
|