|
Ж. вычисл. матем. и матем. физ., 2016, том 56, номер 6, страницы 973–988
(Mi zvmmf10399)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Оптимальная монотонизация высокоточной бикомпактной схемы для нестационарного многомерного уравнения переноса
Е. Н. Аристоваab, Б. В. Роговab, А. В. Чикиткинb a 125047 Москва, Миусская пл. 4, ИПМ РАН
b 141700 Долгопрудный, М.о., Институтский пер., 9, МФТИ
Аннотация:
Предлагается вариант построения гибридной схемы для решения нестационарного неоднородного уравнения переноса. Гибридизация проводится между двумя базовыми схемами: 1) схемой четвертого порядка аппроксимации по всем пространственным переменным и третьего по времени из семейства бикомпактных схем и 2) монотонной схемой первого порядка аппроксимации из семейства методов коротких характеристик с интерполяцией по освещенным граням. Показано, что выбранная схема первого порядка аппроксимации является схемой с наименьшей диссипацией, поэтому названа оптимальной. Зависимость решения гибридной схемы от решений базовых схем является локальной в каждом узле пространственно-временной сетки. Монотонизация строится непрерывным и однородным образом во всех ячейках, сохраняя четвертый порядок пространственной аппроксимации и третий порядок временной аппроксимации в областях гладкости решения, и высокую фактическую точность решения в области разрывов. Логическая простота и однородность алгоритма делают его хорошо приспособленным для использования при расчетах на суперкомпьютерах. Библ. 26. Фиг. 7. Табл. 1.
Ключевые слова:
уравнение переноса, бикомпактные схемы, метод коротких характеристик, монотонность, минимальная диссипация, гибридные схемы.
DOI:
https://doi.org/10.7868/S004446691606003X
Полный текст:
PDF файл (840 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2016, 56:6, 962–976
Реферативные базы данных:
Тип публикации:
Статья
УДК:
519.63 Поступила в редакцию: 09.11.2015
Образец цитирования:
Е. Н. Аристова, Б. В. Рогов, А. В. Чикиткин, “Оптимальная монотонизация высокоточной бикомпактной схемы для нестационарного многомерного уравнения переноса”, Ж. вычисл. матем. и матем. физ., 56:6 (2016), 973–988; Comput. Math. Math. Phys., 56:6 (2016), 962–976
Цитирование в формате AMSBIB
\RBibitem{AriRogChi16}
\by Е.~Н.~Аристова, Б.~В.~Рогов, А.~В.~Чикиткин
\paper Оптимальная монотонизация высокоточной бикомпактной схемы для нестационарного многомерного уравнения переноса
\jour Ж. вычисл. матем. и матем. физ.
\yr 2016
\vol 56
\issue 6
\pages 973--988
\mathnet{http://mi.mathnet.ru/zvmmf10399}
\crossref{https://doi.org/10.7868/S004446691606003X}
\elib{https://elibrary.ru/item.asp?id=26068775}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 6
\pages 962--976
\crossref{https://doi.org/10.1134/S0965542516060038}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000378740000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976447848}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/zvmmf10399 http://mi.mathnet.ru/rus/zvmmf/v56/i6/p973
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Е. Н. Аристова, Н. И. Караваева, “Бикомпактные схемы высокого порядка аппроксимации для уравнений квазидиффузии”, Препринты ИПМ им. М. В. Келдыша, 2018, 045, 28 с.
-
А. В. Чикиткин, Б. В. Рогов, “Два варианта параллельной реализации высокоточных бикомпактных схем для многомерного неоднородного уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2018, 177, 24 с.
-
Е. Н. Аристова, Н. И. Караваева, “Реализация бикомпактной схемы для HOLO алгоритмов решения уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2019, 021, 28 с.
-
Е. Н. Аристова, Н. И. Караваева, “Постановка граничных условий в бикомпактных схемах для HOLO алгоритмов решения уравнения переноса”, Матем. моделирование, 31:9 (2019), 3–20
-
Б. В. Рогов, А. В. Чикиткин, “О сходимости и точности метода итерируемой приближенной факторизации операторов многомерных высокоточных бикомпактных схем”, Матем. моделирование, 31:12 (2019), 119–144
-
Е. Н. Аристова, Г. О. Астафуров, “О сравнении диссипативно-дисперсионных свойств некоторых консервативных разностных схем”, Препринты ИПМ им. М. В. Келдыша, 2020, 117, 22 с.
|
Просмотров: |
Эта страница: | 180 | Полный текст: | 19 | Литература: | 33 | Первая стр.: | 17 |
|