Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2016, Volume 56, Number 7, Pages 1200–1235 (Mi zvmmf10423)  

This article is cited in 2 scientific papers (total in 2 papers)

Studies on the zeros of Bessel functions and methods for their computation: 2. Monotonicity, convexity, concavity, and other properties

M. K. Kerimov

Dorodnicyn Computing Center, Russian Academy of Sciences

Abstract: This work continues the study of real zeros of first- and second-kind Bessel functions and Bessel general functions with real variables and orders begun in the first part of this paper (see M.K. Kerimov, Comput. Math. Math. Phys. $\mathbf{54}$ (9), 1337–1388 (2014)). Some new results concerning such zeros are described and analyzed. Special attention is given to the monotonicity, convexity, and concavity of zeros with respect to their ranks and other parameters.

Key words: Bessel functions of first and second kinds, general cylinder functions, real zeros, concavity and convexity of zeros, monotonicity of zeros, overview.

DOI: https://doi.org/10.7868/S0044466916070097

Full text: PDF file (504 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2016, 56:7, 1175–1208

Bibliographic databases:

UDC: 519.651
Received: 27.01.2016

Citation: M. K. Kerimov, “Studies on the zeros of Bessel functions and methods for their computation: 2. Monotonicity, convexity, concavity, and other properties”, Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016), 1200–1235; Comput. Math. Math. Phys., 56:7 (2016), 1175–1208

Citation in format AMSBIB
\Bibitem{Ker16}
\by M.~K.~Kerimov
\paper Studies on the zeros of Bessel functions and methods for their computation: 2. Monotonicity, convexity, concavity, and other properties
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 7
\pages 1200--1235
\mathnet{http://mi.mathnet.ru/zvmmf10423}
\crossref{https://doi.org/10.7868/S0044466916070097}
\elib{https://elibrary.ru/item.asp?id=26302232}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 7
\pages 1175--1208
\crossref{https://doi.org/10.1134/S0965542516070095}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000381223400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979770585}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10423
  • http://mi.mathnet.ru/eng/zvmmf/v56/i7/p1200

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. S. S. Budzinskiy, D. M. Kharitonov, “On inflection points of Bessel functions of the second kind of positive order”, Integral Transform. Spec. Funct., 28:12 (2017), 909–914  crossref  mathscinet  zmath  isi
    2. M. K. Kerimov, “Studies on the zeroes of Bessel functions and methods for their computation: IV. Inequalities, estimates, expansions, etc., for zeros of Bessel functions”, Comput. Math. Math. Phys., 58:1 (2018), 1–37  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:192
    Full text:32
    References:39
    First page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021