Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2016, Volume 56, Number 8, Pages 1401–1415 (Mi zvmmf10438)  

This article is cited in 1 scientific paper (total in 1 paper)

Hausdorff methods for approximating the convex Edgeworth–Pareto hull in integer problems with monotone objectives

A. I. Pospelovab

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b DATADVANCE, Pokrovskii bul. 3/1B, Moscow, Russia

Abstract: Adaptive methods for the polyhedral approximation of the convex Edgeworth–Pareto hull in multiobjective monotone integer optimization problems are proposed and studied. For these methods, theoretical convergence rate estimates with respect to the number of vertices are obtained. The estimates coincide in order with those for filling and augmentation $H$-methods intended for the approximation of nonsmooth convex compact bodies.

Key words: adaptive methods, polyhedral approximation, convergence rate, multiobjective optimization, Pareto frontier, integer optimization.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150


DOI: https://doi.org/10.7868/S0044466916080147

Full text: PDF file (740 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2016, 56:8, 1388–1401

Bibliographic databases:

UDC: 519.658
Received: 15.05.2015
Revised: 17.12.2015

Citation: A. I. Pospelov, “Hausdorff methods for approximating the convex Edgeworth–Pareto hull in integer problems with monotone objectives”, Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016), 1401–1415; Comput. Math. Math. Phys., 56:8 (2016), 1388–1401

Citation in format AMSBIB
\Bibitem{Pos16}
\by A.~I.~Pospelov
\paper Hausdorff methods for approximating the convex Edgeworth--Pareto hull in integer problems with monotone objectives
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 8
\pages 1401--1415
\mathnet{http://mi.mathnet.ru/zvmmf10438}
\crossref{https://doi.org/10.7868/S0044466916080147}
\elib{https://elibrary.ru/item.asp?id=26498068}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 8
\pages 1388--1401
\crossref{https://doi.org/10.1134/S0965542516080133}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000383026600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84985994758}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10438
  • http://mi.mathnet.ru/eng/zvmmf/v56/i8/p1401

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pham Thi Hoai, Le Dung Muu, Tran Ngoc Thang, “Optimization over the efficient set of multiple objective discrete programs using the Edgeworth-Pareto hull in outcome space”, Pac. J. Optim., 14:4 (2018), 581–594  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:115
    Full text:10
    References:23
    First page:15

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022