Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2016, Volume 56, Number 8, Pages 1428–1440 (Mi zvmmf10440)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer

V. A. Beloshapko, V. F. Butuzov

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: For a singularly perturbed elliptic boundary value problem, an asymptotic expansion of the boundary-layer solution is constructed and justified in the case when the boundary layer consists of three zones with different behavior of the solution, which is caused by the multiplicity of the root of the degenerate equation.

Key words: singularly perturbed equations, boundary-layer asymptotics, the case of a multiple root of the degenerate equation, method of differential inequalities.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-04619_а


DOI: https://doi.org/10.7868/S0044466916080044

Full text: PDF file (315 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2016, 56:8, 1414–1425

Bibliographic databases:

UDC: 519.632.34
Received: 08.12.2015

Citation: V. A. Beloshapko, V. F. Butuzov, “Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016), 1428–1440; Comput. Math. Math. Phys., 56:8 (2016), 1414–1425

Citation in format AMSBIB
\Bibitem{BelBut16}
\by V.~A.~Beloshapko, V.~F.~Butuzov
\paper Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 8
\pages 1428--1440
\mathnet{http://mi.mathnet.ru/zvmmf10440}
\crossref{https://doi.org/10.7868/S0044466916080044}
\elib{https://elibrary.ru/item.asp?id=26498070}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 8
\pages 1414--1425
\crossref{https://doi.org/10.1134/S0965542516080042}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000383026600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84985904947}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10440
  • http://mi.mathnet.ru/eng/zvmmf/v56/i8/p1428

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Butuzov, V. A. Beloshapko, “Singulyarno vozmuschennaya ellipticheskaya zadacha Dirikhle s kratnym kornem vyrozhdennogo uravneniya”, Model. i analiz inform. sistem, 23:5 (2016), 515–528  mathnet  crossref  mathscinet  elib
    2. V. A. Beloshapko, “Cingulyarno vozmuschennaya ellipticheskaya zadacha Dirikhle s trekhzonnym pogranichnym sloem”, Model. i analiz inform. sistem, 24:3 (2017), 280–287  mathnet  crossref  elib
    3. V. F. Butuzov, “On singularly perturbed systems of ODE with a multiple root of the degenerate equation”, Izv. Math., 84:2 (2020), 262–290  mathnet  crossref  crossref  mathscinet  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:155
    Full text:17
    References:25
    First page:15

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022