Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2016, Volume 56, Number 8, Pages 1385–1394 (Mi zvmmf10445)  

Algorithm for computing the covering constant of a linear operator on a cone

S. E. Zhukovskiy, Z. T. Zhukovskaya

RUDN University, Moscow, Russia

Abstract: An algorithm for computing the covering constant for the restriction of a linear operator to a cone defined by a finite set of inequalities is proposed. After a finite number of steps, the algorithm reduces the original problem to one of finding the eigenvalues of linear operators.

Key words: covering constant of a linear operator, linear inequalities in metric space, computational algorithm.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-8215.2016.1
МК-5333.2015.1
Russian Foundation for Basic Research 16-01-00677_а


DOI: https://doi.org/10.7868/S0044466916080160

Full text: PDF file (183 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2016, 56:8, 1373–1381

Bibliographic databases:

UDC: 519.642.8
Received: 26.05.2014
Revised: 29.12.2015

Citation: S. E. Zhukovskiy, Z. T. Zhukovskaya, “Algorithm for computing the covering constant of a linear operator on a cone”, Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016), 1385–1394; Comput. Math. Math. Phys., 56:8 (2016), 1373–1381

Citation in format AMSBIB
\Bibitem{ZhuZhu16}
\by S.~E.~Zhukovskiy, Z.~T.~Zhukovskaya
\paper Algorithm for computing the covering constant of a linear operator on a cone
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 8
\pages 1385--1394
\mathnet{http://mi.mathnet.ru/zvmmf10445}
\crossref{https://doi.org/10.7868/S0044466916080160}
\elib{https://elibrary.ru/item.asp?id=26498066}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 8
\pages 1373--1381
\crossref{https://doi.org/10.1134/S0965542516080157}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000383026600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84985962906}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10445
  • http://mi.mathnet.ru/eng/zvmmf/v56/i8/p1385

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:175
    Full text:15
    References:34
    First page:18

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022