RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2016, Volume 56, Number 10, Pages 1780–1794 (Mi zvmmf10465)  

This article is cited in 2 scientific papers (total in 2 papers)

Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients

M. Kh. Beshtokov

Kabardino-Balkar State University, Nalchik, Russia

Abstract: A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.

Key words: pseudo-parabolic equation with degeneracy, boundary value problems, nonlocal condition, a priori estimate, difference scheme, stability and convergence of difference schemes, third-order pseudo-parabolic equation, pseudo-parabolic equation.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-31246_мол_а


DOI: https://doi.org/10.7868/S0044466916100045

Full text: PDF file (327 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2016, 56:10, 1763–1777

Bibliographic databases:

UDC: 519.633
Received: 05.05.2015
Revised: 29.03.2016

Citation: M. Kh. Beshtokov, “Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016), 1780–1794; Comput. Math. Math. Phys., 56:10 (2016), 1763–1777

Citation in format AMSBIB
\Bibitem{Bes16}
\by M.~Kh.~Beshtokov
\paper Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2016
\vol 56
\issue 10
\pages 1780--1794
\mathnet{http://mi.mathnet.ru/zvmmf10465}
\crossref{https://doi.org/10.7868/S0044466916100045}
\elib{http://elibrary.ru/item.asp?id=26665210}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 10
\pages 1763--1777
\crossref{https://doi.org/10.1134/S0965542516100043}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000386769200010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992364775}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10465
  • http://mi.mathnet.ru/eng/zvmmf/v56/i10/p1780

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Kh. Beshtokov, “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms”, Differ. Equ., 54:2 (2018), 250–267  crossref  mathscinet  zmath  isi
    2. M. Kh. Beshtokov, “K kraevym zadacham dlya vyrozhdayuschikhsya psevdoparabolicheskikh uravnenii s drobnoi proizvodnoi Gerasimova–Kaputo”, Izv. vuzov. Matem., 2018, no. 10, 3–16  mathnet
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:145
    Full text:1
    References:39
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019