RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2017, Volume 57, Number 2, Page 302 (Mi zvmmf10522)  

This article is cited in 1 scientific paper (total in 1 paper)

A new sequential approach for solving the integro-differential equation via Haar wavelet bases

H. Beiglo, M. Erfanian, M. Gachpazan

Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract: In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.

Key words: rationalized Haar wavelet, nonlinear integro-differential equation, operational matrix, fixed point theorem, error analysis.

DOI: https://doi.org/10.7868/S0044466917020041

Full text: PDF file (31 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2017, 57:2, 297–305

Bibliographic databases:

Document Type: Article
UDC: 519.642.2
Received: 10.04.2014
Revised: 18.08.2014
Language: English

Citation: H. Beiglo, M. Erfanian, M. Gachpazan, “A new sequential approach for solving the integro-differential equation via Haar wavelet bases”, Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017), 302; Comput. Math. Math. Phys., 57:2 (2017), 297–305

Citation in format AMSBIB
\Bibitem{BeiErfGac17}
\by H.~Beiglo, M.~Erfanian, M.~Gachpazan
\paper A new sequential approach for solving the integro-differential equation via Haar wavelet bases
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 2
\pages 302
\mathnet{http://mi.mathnet.ru/zvmmf10522}
\crossref{https://doi.org/10.7868/S0044466917020041}
\elib{http://elibrary.ru/item.asp?id=28918674}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 2
\pages 297--305
\crossref{https://doi.org/10.1134/S096554251702004X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000397983100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032955233}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10522
  • http://mi.mathnet.ru/eng/zvmmf/v57/i2/p302

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Erfanian M., Zeidabadi H., Akrami A., “Using of Haar Wavelets For Solving of Mixed 2D Nonlinear Volterra-Fredholm Integral Equation”, J. Coupled Syst. Multiscale Dyn., 6:2 (2018), 121–127  crossref  mathscinet  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:79
    Full text:28
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019