Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2017, Volume 57, Number 5, Pages 768–782 (Mi zvmmf10569)  

Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints

A. A. Krasovskiia, P. D. Lebedevb, A. M. Tarasyevbc

a International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
b Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
c Ural Federal University, Yekaterinburg, Russia

Abstract: We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.

Key words: mathematical modeling, optimal growth problem, Pontryagin's maximum principle, steady states.

Funding Agency Grant Number
Russian Science Foundation 15-11-10018


DOI: https://doi.org/10.7868/S0044466917050052

Full text: PDF file (733 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2017, 57:5, 770–783

Bibliographic databases:

UDC: 519.626
Received: 25.04.2016

Citation: A. A. Krasovskii, P. D. Lebedev, A. M. Tarasyev, “Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints”, Zh. Vychisl. Mat. Mat. Fiz., 57:5 (2017), 768–782; Comput. Math. Math. Phys., 57:5 (2017), 770–783

Citation in format AMSBIB
\Bibitem{KraLebTar17}
\by A.~A.~Krasovskii, P.~D.~Lebedev, A.~M.~Tarasyev
\paper Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 5
\pages 768--782
\mathnet{http://mi.mathnet.ru/zvmmf10569}
\crossref{https://doi.org/10.7868/S0044466917050052}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3661115}
\elib{https://elibrary.ru/item.asp?id=29331731}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 5
\pages 770--783
\crossref{https://doi.org/10.1134/S0965542517050050}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000403459000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020676683}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10569
  • http://mi.mathnet.ru/eng/zvmmf/v57/i5/p768

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:195
    Full text:13
    References:30
    First page:22

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022