Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2017, Volume 57, Number 7, Pages 1161–1169 (Mi zvmmf10588)  

On approximate solution of the Dixon integral equation and some its generalizations

A. G. Barseghyan

Institute of Mathematics, National Academy of Sciences of the Republic of Armenia, Erevan, Republic of Armenia

Abstract: The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.

Key words: Dixon equation, Wiener–Hopf equation, kernel averaging method, factorization.

Funding Agency Grant Number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 15T-1A246


DOI: https://doi.org/10.7868/S0044466917070055

Full text: PDF file (249 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2017, 57:7, 1158–1166

Bibliographic databases:

UDC: 519.63
Received: 20.04.2016

Citation: A. G. Barseghyan, “On approximate solution of the Dixon integral equation and some its generalizations”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017), 1161–1169; Comput. Math. Math. Phys., 57:7 (2017), 1158–1166

Citation in format AMSBIB
\Bibitem{Bar17}
\by A.~G.~Barseghyan
\paper On approximate solution of the Dixon integral equation and some its generalizations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 7
\pages 1161--1169
\mathnet{http://mi.mathnet.ru/zvmmf10588}
\crossref{https://doi.org/10.7868/S0044466917070055}
\elib{https://elibrary.ru/item.asp?id=29404223}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 7
\pages 1158--1166
\crossref{https://doi.org/10.1134/S0965542517070041}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000406766300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026817871}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10588
  • http://mi.mathnet.ru/eng/zvmmf/v57/i7/p1161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:98
    Full text:9
    References:15
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021