RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2017, Volume 57, Number 7, Pages 1205–1229 (Mi zvmmf10592)  

Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation

O. A. Rogozinab

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
b Dorodnicyn Computing Center, Federal Research Center УComputer Science and ControlФ, Russian Academy of Sciences, Moscow, Russia

Abstract: Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan–Galkin–Friedlander equations, containing some non-Navier–Stokes terms in the momentum equation. Appropriate boundary conditions are determined from the asymptotic analysis of the Knudsen layer on the basis of the Boltzmann equation. Boundary conditions up to the second order of the Knudsen number are studied. Some two-dimensional examples are examined for the comparative analysis. The fluid-dynamic results are supported by numerical solution of the Boltzmann equation obtained by the Tcheremissine's projection-interpolation discrete-velocity method extended for nonuniform grids. The competition pattern between the first- and the second-order nonlinear thermal-stress flows has been obtained for the first time.

Key words: Boltzmann equation, Kogan–Galkin–Friedlander equations, nonlinear thermal-stress flow, projection method, OpenFOAM.

DOI: https://doi.org/10.7868/S0044466917060126

Full text: PDF file (2292 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2017, 57:7, 1201–1224

Bibliographic databases:

UDC: 519.634
Received: 22.07.2015
Revised: 14.06.2016

Citation: O. A. Rogozin, “Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017), 1205–1229; Comput. Math. Math. Phys., 57:7 (2017), 1201–1224

Citation in format AMSBIB
\Bibitem{Rog17}
\by O.~A.~Rogozin
\paper Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 7
\pages 1205--1229
\mathnet{http://mi.mathnet.ru/zvmmf10592}
\crossref{https://doi.org/10.7868/S0044466917060126}
\elib{http://elibrary.ru/item.asp?id=29404228}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 7
\pages 1201--1224
\crossref{https://doi.org/10.1134/S0965542517060112}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000406766300012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026841248}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10592
  • http://mi.mathnet.ru/eng/zvmmf/v57/i7/p1205

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:67
    References:16
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019