RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2017, Volume 57, Number 10, Pages 1581–1599 (Mi zvmmf10620)  

On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean

M. V. Abilova, M. K. Kerimovb, E. V. Selimkhanova

a Daghestan State University, Makhachkala, Russia
b Dorodnicyn Computing Center, Federal Research Center Computer Science and Control, Russian Academy of Sciences, Moscow, Russia

Abstract: Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of corresponding expansions. However, the errors of these approximations are rarely estimated or minimized in certain classes of functions. In this paper, the convergence rate (of best approximations) of a Fourier series in terms of Jacobi polynomials is estimated in classes of bivariate functions characterized by a generalized modulus of continuity. An approximation method based on “spherical” partial sums of series is substantiated, and the introduction of a corresponding class of functions is justified. A two-sided estimate of the Kolmogorov $N$-width for bivariate functions is given.

Key words: functions in two variables, FourierJacobi sums, generalized modulus of continuity, estimates of best approximations, Kolmogorov $N$-width.

DOI: https://doi.org/10.7868/S0044466917100039

Full text: PDF file (277 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2017, 57:10, 1559–1576

Bibliographic databases:

UDC: 519.651
Received: 27.02.2017

Citation: M. V. Abilov, M. K. Kerimov, E. V. Selimkhanov, “On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean”, Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017), 1581–1599; Comput. Math. Math. Phys., 57:10 (2017), 1559–1576

Citation in format AMSBIB
\Bibitem{AbiKerSel17}
\by M.~V.~Abilov, M.~K.~Kerimov, E.~V.~Selimkhanov
\paper On some estimates for best approximations of bivariate functions by Fourier--Jacobi sums in the mean
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2017
\vol 57
\issue 10
\pages 1581--1599
\mathnet{http://mi.mathnet.ru/zvmmf10620}
\crossref{https://doi.org/10.7868/S0044466917100039}
\elib{https://elibrary.ru/item.asp?id=30046353}
\transl
\jour Comput. Math. Math. Phys.
\yr 2017
\vol 57
\issue 10
\pages 1559--1576
\crossref{https://doi.org/10.1134/S0965542517100037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000414376700001}
\elib{https://elibrary.ru/item.asp?id=31046030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032740532}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10620
  • http://mi.mathnet.ru/eng/zvmmf/v57/i10/p1581

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •      Computational Mathematics and Mathematical Physics
    Number of views:
    This page:171
    Full text:3
    References:28
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021