|
This article is cited in 22 scientific papers (total in 22 papers)
A multidimensional global optimization algorithm based on adaptive diagonal curves
D. E. Kvasova, Ya. D. Sergeyevab a N. I. Lobachevski State University of Nizhni Novgorod
b ISI-CNR, via P. Bucci, Cubo 41-С, с/о DEIS, Università della Calabria, 87036 Rende (CS)
Full text:
PDF file (2911 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 2003, 43:1, 40–56
Bibliographic databases:
UDC:
519.658
MSC: Primary 90C26; Secondary 90C29, 90C30 Received: 08.01.2002 Revised: 26.06.2002
Citation:
D. E. Kvasov, Ya. D. Sergeyev, “A multidimensional global optimization algorithm based on adaptive diagonal curves”, Zh. Vychisl. Mat. Mat. Fiz., 43:1 (2003), 42–59; Comput. Math. Math. Phys., 43:1 (2003), 40–56
Citation in format AMSBIB
\Bibitem{KvaSer03}
\by D.~E.~Kvasov, Ya.~D.~Sergeyev
\paper A multidimensional global optimization algorithm based on adaptive diagonal curves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2003
\vol 43
\issue 1
\pages 42--59
\mathnet{http://mi.mathnet.ru/zvmmf1072}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1968767}
\zmath{https://zbmath.org/?q=an:1083.90524}
\transl
\jour Comput. Math. Math. Phys.
\yr 2003
\vol 43
\issue 1
\pages 40--56
Linking options:
http://mi.mathnet.ru/eng/zvmmf1072 http://mi.mathnet.ru/eng/zvmmf/v43/i1/p42
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Orlov, A. S. Strekalovskii, “Seeking the equilibrium situations in bimatrix games”, Autom. Remote Control, 65:2 (2004), 204–218
-
Sergeyev Y.D., “Efficient partition of N-dimensional intervals in the framework of one-point-based algorithms”, J Optim Theory Appl, 124:2 (2005), 503–510
-
Sergeyev Y.D., Kvasov D.E., “Global search based on efficient diagonal partitions and a set of lipschitz constants”, SIAM J Optim, 16:3 (2006), 910–937
-
Kvasov D.E., “Multidimensional Lipschitz global optimization based on efficient diagonal partitions”, 4Or-A Quarterly Journal of Operations Research, 6:4 (2008), 403–406
-
Kvasov D.E., Menniti D., Pinnarelli A., Sergeyev Y.D., Sorrentino N., “Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions”, Electric Power Systems Research, 78:7 (2008), 1217–1229
-
S. M. Elsakov, V. I. Shiryaev, “Homogeneous algorithms for multiextremal optimization”, Comput. Math. Math. Phys., 50:10 (2010), 1642–1654
-
Paulavicius R., Zilinskas J., Grothey A., “Parallel branch and bound for global optimization with combination of Lipschitz bounds”, Optimization Methods & Software, 26:3 (2011), 487–498
-
Elsakov S.M., Shiryaev V.I., “Odnorodnye algoritmy mnogoekstremalnoi optimizatsii dlya tselevykh funktsii so znachitelnym vremenem vychisleniya znacheniya”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 48–69
-
Kvasov D.E. Sergeyev Ya.D., “Lipschitz Gradients for Global Optimization in a One-Point-Based Partitioning Scheme”, J. Comput. Appl. Math., 236:16, SI (2012), 4042–4054
-
Kovartsev A.N., Popova-Kovartseva D.A., “Mnogomernyi parallelnyi algoritm globalnoi optimizatsii modifitsirovannym metodom polovinnykh delenii”, V mire nauchnykh otkrytii, 2012, 80–107
-
D. E. Kvasov, Ya. D. Sergeyev, “Lipschitz global optimization methods in control problems”, Autom. Remote Control, 74:9 (2013), 1435–1448
-
Abaffy J., Galantai A., “An Always Convergent Algorithm for Global Minimization of Univariate Lipschitz Functions”, Acta Polytech. Hung., 10:7, SI (2013), 21–39
-
Kvasov D.E. Sergeyev Ya.D., “Deterministic Approaches For Solving Practical Black-Box Global Optimization Problems”, Adv. Eng. Softw., 80:SI (2015), 58–66
-
Sergeyev Ya.D. Kvasov D.E., “A Deterministic Global Optimization Using Smooth Diagonal Auxiliary Functions”, Commun. Nonlinear Sci. Numer. Simul., 21:1-3 (2015), 99–111
-
Liu H., Xu Sh., Ma Y., Wang X., “Global Optimization of Expensive Black Box Functions Using Potential Lipschitz Constants and Response Surfaces”, J. Glob. Optim., 63:2 (2015), 229–251
-
Podgornyi K.A. Leonov A.V., “Review of the Current Methods Used To Assess the Values of Coefficients, Sensitivity, and Adequacy of Simulation Models of Aquatic Ecosystems”, Water Resour., 42:4 (2015), 477–499
-
Gergel V. Grishagin V. Israfilov R., “Local Tuning in Nested Scheme of Global Optimization”, International Conference on Computational Science, Iccs 2015 Computational Science At the Gates of Nature, Procedia Computer Science, 51, ed. Koziel S. Leifsson L. Lees M. Krzhizhanovskaya V. Dongarra J. Sloot P., Elsevier Science BV, 2015, 865–874
-
Zilinskas A., Gimbutiene G., “on One-Step Worst-Case Optimal Trisection in Univariate Bi-Objective Lipschitz Optimization”, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 123–136
-
Gergel V., Grishagin V., Gergel A., “Adaptive nested optimization scheme for multidimensional global search”, J. Glob. Optim., 66:1, SI (2016), 35–51
-
Grishagin V.A., Israfilov R.A., “Global search acceleration in the nested optimization scheme”, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015) (Rhodes, Greece, 22?28 September 2015), AIP Conference Proceedings, 1738, eds. Simos T., Tsitouras C., Amer Inst Physics, 2016, 400010
-
Barkalov K. Sysoyev A. Lebedev I. Sovrasov V., “Solving Genopt Problems With the Use of Examin Solver”, Learning and Intelligent Optimization (Lion 10), Lecture Notes in Computer Science, 10079, ed. Festa P. Sellmann M. Vanschoren J., Springer International Publishing Ag, 2016, 283–295
-
Pardalos P. Zilinskas A. Zilinskas J., “Non-Convex Multi-Objective Optimization”, Non-Convex Multi-Objective Optimization, Springer Optimization and Its Applications, 123, Springer International Publishing Ag, 2017, 1–192
|
Number of views: |
This page: | 784 | Full text: | 304 | References: | 63 | First page: | 1 |
|