RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2003, Volume 43, Number 1, Pages 42–59 (Mi zvmmf1072)  

This article is cited in 22 scientific papers (total in 22 papers)

A multidimensional global optimization algorithm based on adaptive diagonal curves

D. E. Kvasova, Ya. D. Sergeyevab

a N. I. Lobachevski State University of Nizhni Novgorod
b ISI-CNR, via P. Bucci, Cubo 41-С, с/о DEIS, Università della Calabria, 87036 Rende (CS)

Full text: PDF file (2911 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2003, 43:1, 40–56

Bibliographic databases:
UDC: 519.658
MSC: Primary 90C26; Secondary 90C29, 90C30
Received: 08.01.2002
Revised: 26.06.2002

Citation: D. E. Kvasov, Ya. D. Sergeyev, “A multidimensional global optimization algorithm based on adaptive diagonal curves”, Zh. Vychisl. Mat. Mat. Fiz., 43:1 (2003), 42–59; Comput. Math. Math. Phys., 43:1 (2003), 40–56

Citation in format AMSBIB
\Bibitem{KvaSer03}
\by D.~E.~Kvasov, Ya.~D.~Sergeyev
\paper A multidimensional global optimization algorithm based on adaptive diagonal curves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2003
\vol 43
\issue 1
\pages 42--59
\mathnet{http://mi.mathnet.ru/zvmmf1072}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1968767}
\zmath{https://zbmath.org/?q=an:1083.90524}
\transl
\jour Comput. Math. Math. Phys.
\yr 2003
\vol 43
\issue 1
\pages 40--56


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1072
  • http://mi.mathnet.ru/eng/zvmmf/v43/i1/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Orlov, A. S. Strekalovskii, “Seeking the equilibrium situations in bimatrix games”, Autom. Remote Control, 65:2 (2004), 204–218  mathnet  crossref  mathscinet  zmath  isi  scopus
    2. Sergeyev Y.D., “Efficient partition of N-dimensional intervals in the framework of one-point-based algorithms”, J Optim Theory Appl, 124:2 (2005), 503–510  crossref  mathscinet  zmath  isi  elib  scopus
    3. Sergeyev Y.D., Kvasov D.E., “Global search based on efficient diagonal partitions and a set of lipschitz constants”, SIAM J Optim, 16:3 (2006), 910–937  crossref  mathscinet  zmath  isi  elib  scopus
    4. Kvasov D.E., “Multidimensional Lipschitz global optimization based on efficient diagonal partitions”, 4Or-A Quarterly Journal of Operations Research, 6:4 (2008), 403–406  crossref  mathscinet  zmath  isi  scopus
    5. Kvasov D.E., Menniti D., Pinnarelli A., Sergeyev Y.D., Sorrentino N., “Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions”, Electric Power Systems Research, 78:7 (2008), 1217–1229  crossref  isi  elib  scopus
    6. S. M. Elsakov, V. I. Shiryaev, “Homogeneous algorithms for multiextremal optimization”, Comput. Math. Math. Phys., 50:10 (2010), 1642–1654  mathnet  crossref  adsnasa  isi
    7. Paulavicius R., Zilinskas J., Grothey A., “Parallel branch and bound for global optimization with combination of Lipschitz bounds”, Optimization Methods & Software, 26:3 (2011), 487–498  crossref  mathscinet  zmath  isi  scopus
    8. Elsakov S.M., Shiryaev V.I., “Odnorodnye algoritmy mnogoekstremalnoi optimizatsii dlya tselevykh funktsii so znachitelnym vremenem vychisleniya znacheniya”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 48–69  mathnet  elib
    9. Kvasov D.E. Sergeyev Ya.D., “Lipschitz Gradients for Global Optimization in a One-Point-Based Partitioning Scheme”, J. Comput. Appl. Math., 236:16, SI (2012), 4042–4054  crossref  mathscinet  zmath  isi  elib  scopus
    10. Kovartsev A.N., Popova-Kovartseva D.A., “Mnogomernyi parallelnyi algoritm globalnoi optimizatsii modifitsirovannym metodom polovinnykh delenii”, V mire nauchnykh otkrytii, 2012, 80–107  elib
    11. D. E. Kvasov, Ya. D. Sergeyev, “Lipschitz global optimization methods in control problems”, Autom. Remote Control, 74:9 (2013), 1435–1448  mathnet  crossref  isi
    12. Abaffy J., Galantai A., “An Always Convergent Algorithm for Global Minimization of Univariate Lipschitz Functions”, Acta Polytech. Hung., 10:7, SI (2013), 21–39  isi  elib
    13. Kvasov D.E. Sergeyev Ya.D., “Deterministic Approaches For Solving Practical Black-Box Global Optimization Problems”, Adv. Eng. Softw., 80:SI (2015), 58–66  crossref  isi  elib  scopus
    14. Sergeyev Ya.D. Kvasov D.E., “A Deterministic Global Optimization Using Smooth Diagonal Auxiliary Functions”, Commun. Nonlinear Sci. Numer. Simul., 21:1-3 (2015), 99–111  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    15. Liu H., Xu Sh., Ma Y., Wang X., “Global Optimization of Expensive Black Box Functions Using Potential Lipschitz Constants and Response Surfaces”, J. Glob. Optim., 63:2 (2015), 229–251  crossref  mathscinet  zmath  isi  elib  scopus
    16. Podgornyi K.A. Leonov A.V., “Review of the Current Methods Used To Assess the Values of Coefficients, Sensitivity, and Adequacy of Simulation Models of Aquatic Ecosystems”, Water Resour., 42:4 (2015), 477–499  crossref  isi  elib  scopus
    17. Gergel V. Grishagin V. Israfilov R., “Local Tuning in Nested Scheme of Global Optimization”, International Conference on Computational Science, Iccs 2015 Computational Science At the Gates of Nature, Procedia Computer Science, 51, ed. Koziel S. Leifsson L. Lees M. Krzhizhanovskaya V. Dongarra J. Sloot P., Elsevier Science BV, 2015, 865–874  crossref  isi  scopus
    18. Zilinskas A., Gimbutiene G., “on One-Step Worst-Case Optimal Trisection in Univariate Bi-Objective Lipschitz Optimization”, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 123–136  crossref  mathscinet  isi  elib  scopus
    19. Gergel V., Grishagin V., Gergel A., “Adaptive nested optimization scheme for multidimensional global search”, J. Glob. Optim., 66:1, SI (2016), 35–51  crossref  mathscinet  zmath  isi  elib  scopus
    20. Grishagin V.A., Israfilov R.A., “Global search acceleration in the nested optimization scheme”, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015) (Rhodes, Greece, 22?28 September 2015), AIP Conference Proceedings, 1738, eds. Simos T., Tsitouras C., Amer Inst Physics, 2016, 400010  crossref  isi  scopus
    21. Barkalov K. Sysoyev A. Lebedev I. Sovrasov V., “Solving Genopt Problems With the Use of Examin Solver”, Learning and Intelligent Optimization (Lion 10), Lecture Notes in Computer Science, 10079, ed. Festa P. Sellmann M. Vanschoren J., Springer International Publishing Ag, 2016, 283–295  crossref  isi  scopus
    22. Pardalos P. Zilinskas A. Zilinskas J., “Non-Convex Multi-Objective Optimization”, Non-Convex Multi-Objective Optimization, Springer Optimization and Its Applications, 123, Springer International Publishing Ag, 2017, 1–192  crossref  mathscinet  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:784
    Full text:304
    References:63
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021