RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 4, Pages 626–635 (Mi zvmmf10725)  

On the relationships of cluster measures and distributions of distances in compact metric spaces

A. S. Pushnyakov

Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia

Abstract: A compact metric space with a bounded Borel measure is considered. Any measurable set of diameter not exceeding $r$ is called $r$-cluster. The existence of a collection consisting of a fixed number of $2r$-clusters possessing the following properties is investigated: the clusters are located at the distance $r$ from each other and the collection measure (the total measure of the clusters in the collection) is close to the measure of the entire space. It is proved that there exists a collection with a maximum measure among such collections. The concept of $r$-parametric discretization of the distribution of distances into short, medium, and long distances is defined. In terms of this discretization, a lower bound on the measure of the maximum-measure collection is obtained.

Key words: clusterization, compact metric space, Borel measure, Hausdorff metric, Blaschke theorem, maximum cardinality matching.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-07-00852_а


DOI: https://doi.org/10.7868/S0044466918040130

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:4, 612–620

Bibliographic databases:

Document Type: Article
UDC: 519.72
Received: 09.06.2016

Citation: A. S. Pushnyakov, “On the relationships of cluster measures and distributions of distances in compact metric spaces”, Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018), 626–635; Comput. Math. Math. Phys., 58:4 (2018), 612–620

Citation in format AMSBIB
\Bibitem{Pus18}
\by A.~S.~Pushnyakov
\paper On the relationships of cluster measures and distributions of distances in compact metric spaces
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 4
\pages 626--635
\mathnet{http://mi.mathnet.ru/zvmmf10725}
\crossref{https://doi.org/10.7868/S0044466918040130}
\elib{http://elibrary.ru/item.asp?id=32825785}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 4
\pages 612--620
\crossref{https://doi.org/10.1134/S0965542518040140}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000432826100014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047264442}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10725
  • http://mi.mathnet.ru/eng/zvmmf/v58/i4/p626

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019