Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 7, Pages 1059–1072 (Mi zvmmf10743)  

Integro-differential polynomial and trigonometrical splines and quadrature formulas

I. G. Burova, T. O. Evdokimova, O. V. Rodnikova

St. Petersburg State University, St. Petersburg, Russia

Abstract: This work is one of many that are devoted to the further investigation of local interpolating polynomial splines of the fifth order approximation. Here, new polynomial and trigonometrical basic splines are presented. The main features of these splines are the following: the approximation is constructed separately for each grid interval (or elementary rectangular), the approximation constructed as the sum of products of the basic splines and the values of function in nodes and/or the values of its derivatives and/or the values of integrals of this function over subintervals. Basic splines are determined by using a solving system of equations which are provided by the set of functions. It is known that when integrals of the function over the intervals is equal to the integrals of the approximation of the function over the intervals then the approximation has some physical parallel. The splines which are constructed here satisfy the property of the fifth order approximation. Here, the one-dimensional polynomial and trigonometrical basic splines of the fifth order approximation are constructed when the values of the function are known in each point of interpolation. For the construction of the spline, we use the discrete analogues of the first derivative and quadrature with the appropriate order of approximation. We compare the properties of these splines with splines which are constructed when the values of the first derivative of the function are known in each point of interpolation and the values of integral over each grid interval are given. The one-dimensional case can be extended to multiple dimensions through the use of tensor product spline constructs. Numerical examples are represented.

Key words: polynomial splines, trigonometrical splines, integro-differential splines, interpolation.

DOI: https://doi.org/10.31857/S004446690000308-9

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:7, 1011–1024

Bibliographic databases:

UDC: 519.65
Received: 13.03.2017

Citation: I. G. Burova, T. O. Evdokimova, O. V. Rodnikova, “Integro-differential polynomial and trigonometrical splines and quadrature formulas”, Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1059–1072; Comput. Math. Math. Phys., 58:7 (2018), 1011–1024

Citation in format AMSBIB
\Bibitem{BurEvdRod18}
\by I.~G.~Burova, T.~O.~Evdokimova, O.~V.~Rodnikova
\paper Integro-differential polynomial and trigonometrical splines and quadrature formulas
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 7
\pages 1059--1072
\mathnet{http://mi.mathnet.ru/zvmmf10743}
\crossref{https://doi.org/10.31857/S004446690000308-9}
\elib{https://elibrary.ru/item.asp?id=35723859}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 7
\pages 1011--1024
\crossref{https://doi.org/10.1134/S0965542518070047}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000442613300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052246754}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10743
  • http://mi.mathnet.ru/eng/zvmmf/v58/i7/p1059

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:120
    References:10

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022