RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 7, Pages 1178–1188 (Mi zvmmf10753)  

Solution of a boundary value problem for velocity-linearized Navier–Stokes equations in the case of a heated spherical solid particle settling in fluid

A. V. Glushaka, N. V. Malaia, E. R. Shchukinb

a Belgorod State University, Belgorod, Russia
b Joint Institute of High Temperatures, Russian Academy of Sciences, Moscow, Russia

Abstract: Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settling in fluid is considered as an application.

Key words: Navier–Stokes equation linearized with respect to velocity, boundary value problem for a viscous incompressible nonisothermal fluid.

DOI: https://doi.org/10.31857/S004446690000365-2

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:7, 1132–1141

Bibliographic databases:

Document Type: Article
UDC: 519.635
Received: 06.04.2016
Revised: 26.12.2017

Citation: A. V. Glushak, N. V. Malai, E. R. Shchukin, “Solution of a boundary value problem for velocity-linearized Navier–Stokes equations in the case of a heated spherical solid particle settling in fluid”, Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1178–1188; Comput. Math. Math. Phys., 58:7 (2018), 1132–1141

Citation in format AMSBIB
\Bibitem{GluMalShc18}
\by A.~V.~Glushak, N.~V.~Malai, E.~R.~Shchukin
\paper Solution of a boundary value problem for velocity-linearized Navier--Stokes equations in the case of a heated spherical solid particle settling in fluid
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 7
\pages 1178--1188
\mathnet{http://mi.mathnet.ru/zvmmf10753}
\crossref{https://doi.org/10.31857/S004446690000365-2}
\elib{http://elibrary.ru/item.asp?id=35723871}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 7
\pages 1132--1141
\crossref{https://doi.org/10.1134/S0965542518070114}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000442613300011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052217451}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10753
  • http://mi.mathnet.ru/eng/zvmmf/v58/i7/p1178

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019