Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 8, Pages 157–181 (Mi zvmmf10771)  

Application of compact and multioperator approximations in the immersed boundary method

A. I. Tolstykha, E. N. Chigerevb

a Dorodnicyn Computing Center, Federal Research Center УComputer Science and ControlФ, Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Russia

Abstract: Schemes with nonlocal approximations (compact and multioperator) are used in the immersed boundary method. Their accuracy and convergence are analyzed in the case of a model problem. For the flow over a cylinder, the numerical results based on the compressible Navier–Stokes equations are compared with available numerical and experimental data. The cases of low, moderate, and high Reynolds numbers are considered.

Key words: immersed boundary method, compact and multioperator schemes, radial basis functions, the Navier–Stokes equations, flow around a cylinder.

DOI: https://doi.org/10.31857/S004446690002010-2

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:8, 1354–1376

Bibliographic databases:

UDC: 519.63
Received: 05.03.2018

Citation: A. I. Tolstykh, E. N. Chigerev, “Application of compact and multioperator approximations in the immersed boundary method”, Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018), 157–181; Comput. Math. Math. Phys., 58:8 (2018), 1354–1376

Citation in format AMSBIB
\Bibitem{TolChi18}
\by A.~I.~Tolstykh, E.~N.~Chigerev
\paper Application of compact and multioperator approximations in the immersed boundary method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 8
\pages 157--181
\mathnet{http://mi.mathnet.ru/zvmmf10771}
\crossref{https://doi.org/10.31857/S004446690002010-2}
\elib{https://elibrary.ru/item.asp?id=36283440}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 8
\pages 1354--1376
\crossref{https://doi.org/10.1134/S096554251808016X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000447951800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053877028}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10771
  • http://mi.mathnet.ru/eng/zvmmf/v58/i8/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:103
    References:10

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021