Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 10, Pages 1656–1665 (Mi zvmmf10792)  

This article is cited in 2 scientific papers (total in 2 papers)

On the existence of an infinite number of eigenvalues in one nonlinear problem of waveguide theory

D. V. Valovik, S. V. Tikhov

Penza State University, Penza, Russia

Abstract: A nonlinear Sturm–Liouville-type eigenvalue problem on an interval with a boundary condition of the first kind and an additional local condition at one of the boundaries of the interval is considered. All the parameters of the problem are real. The existence of an infinite number of (isolated) positive eigenvalues is proven, their asymptotic behavior is indicated, a condition for the periodicity of the eigenfunctions is found, the period is calculated, and an explicit formula for the zeros of the eigenfunction is presented. It is shown that methods of perturbation theory are not applicable to the complete study of the nonlinear problem.

Key words: nonlinear Sturm–Liouville-type eigenvalue problem, quasilinear differential equation, asymptotics of eigenvalues, comparison theorem.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.894.2017/4.6


DOI: https://doi.org/10.31857/S004446690003585-4

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:10, 1600–1609

Bibliographic databases:

UDC: 517.984.5
Received: 25.10.2017
Revised: 23.01.2018

Citation: D. V. Valovik, S. V. Tikhov, “On the existence of an infinite number of eigenvalues in one nonlinear problem of waveguide theory”, Zh. Vychisl. Mat. Mat. Fiz., 58:10 (2018), 1656–1665; Comput. Math. Math. Phys., 58:10 (2018), 1600–1609

Citation in format AMSBIB
\Bibitem{ValTik18}
\by D.~V.~Valovik, S.~V.~Tikhov
\paper On the existence of an infinite number of eigenvalues in one nonlinear problem of waveguide theory
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 10
\pages 1656--1665
\mathnet{http://mi.mathnet.ru/zvmmf10792}
\crossref{https://doi.org/10.31857/S004446690003585-4}
\elib{https://elibrary.ru/item.asp?id=36715791}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 10
\pages 1600--1609
\crossref{https://doi.org/10.1134/S0965542518100135}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000449497100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056098816}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10792
  • http://mi.mathnet.ru/eng/zvmmf/v58/i10/p1656

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tikhov V S., Valovik D.V., “Propagation of Electromagnetic Waves in a Shielded Dielectric Layer With Cubic Nonlinearity”, 2018 Days on Diffraction (Dd), eds. Motygin O., Kiselev A., Goray L., Kazakov A., Kirpichnikova A., Perel M., IEEE, 2018, 283–287  isi
    2. D. V. Valovik, S. V. Tikhov, “Linearizuemye i nelinearizuemye resheniya v nelineinoi zadache o sobstvennykh znacheniyakh, voznikayuschei v teorii elektrodinamicheskikh volnovodov, zapolnennykh nelineinoi sredoi”, MaterialyXVII Vserossiiskoi molodezhnoishkoly-konferentsii Lobachevskie chteniya-2018, 23-28 noyabrya 2018 g., Kazan.Chast 2, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 176, VINITI RAN, M., 2020, 34–49  mathnet  crossref
  •      Computational Mathematics and Mathematical Physics
    Number of views:
    This page:110
    References:19

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021