Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2019, Volume 59, Number 2, Pages 277–285 (Mi zvmmf10835)  

Alternating triangular schemes for second-order evolution equations

P. N. Vabishchevichab

a Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 115191 Russia
b Ammosov Northeastern Federal University, Yakutsk, 677000 Russia

Abstract: Schemes of the Samarskii alternating triangular method are based on splitting the problem operator into two operators that are conjugate to each other. When the Cauchy problem for a first-order evolution equation is solved approximately, this makes it possible to construct unconditionally stable two-component factorized splitting schemes. Explicit schemes are constructed for parabolic problems based on the alternating triangular method. The approximation properties can be improved by using three-level schemes. The main possibilities are indicated for constructing alternating triangular schemes for second-order evolution equations. New schemes are constructed based on the regularization of the standard alternating triangular schemes. The features of constructing alternating triangular schemes are pointed out for problems with many operator terms and for second-order evolution equations involving operator terms for the first time derivative. The study is based on the general stability (well-posedness) theory for operator-difference schemes.

Key words: second-order evolution equation, alternating triangular method, splitting schemes, stability of operator-difference schemes.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0013
This study was supported by the Government of the Russian Federation (agreement no. 14.Y26.31.0013).


DOI: https://doi.org/10.1134/S0044466919020157


English version:
Computational Mathematics and Mathematical Physics, 2019, 59:2, 266–274

Bibliographic databases:

UDC: 519.63
Received: 22.05.2018

Citation: P. N. Vabishchevich, “Alternating triangular schemes for second-order evolution equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019), 277–285; Comput. Math. Math. Phys., 59:2 (2019), 266–274

Citation in format AMSBIB
\Bibitem{Vab19}
\by P.~N.~Vabishchevich
\paper Alternating triangular schemes for second-order evolution equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 2
\pages 277--285
\mathnet{http://mi.mathnet.ru/zvmmf10835}
\crossref{https://doi.org/10.1134/S0044466919020157}
\elib{https://elibrary.ru/item.asp?id=36962813}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 2
\pages 266--274
\crossref{https://doi.org/10.1134/S0965542519020155}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000468087400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066055026}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10835
  • http://mi.mathnet.ru/eng/zvmmf/v59/i2/p277

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:66

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021