Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 11, Pages 1889–1899 (Mi zvmmf10845)  

A method for simulating the dynamics of rarefied gas based on lattice Boltzmann equations and the BGK equation

O. V. Ilyin

Dorodnicyn Computing Center, Federal Research Center УComputer Science and ControlФ, Russian Academy of Sciences, Moscow, Russia

Abstract: A hybrid method for solving boundary value problems for rarefied gas using the Bhatnagar–Gross–Krook (BGK) model and the lattice Boltzmann equation is studied. One-dimensional boundary value problems subject to membrane-type boundary conditions are considered. In strongly nonequilibrium regions, the BGK model should be used, and in the regions in which the distribution function is close to Maxwell’s one, the lattice Boltzmann equations can be used. On the region boundaries, a matching procedure should be performed; such a procedure is proposed in this paper. Note that the standard lattice Boltzmann models distort the distribution function on the region boundaries, but this distortion has no physical meaning. It is shown that, in order to correctly join the solutions on the region boundaries, the semi-moments of Maxwell’s distribution must be exactly reproduced. For this purpose, novel lattice models of the Boltzmann equation are constructed using the entropy method. Results of numerical computations of the temperature and density profiles for the Knudsen number equal to $0.1$ are presented, and the numerically obtained distribution function at the matching point is compared with the theoretical distribution function. Computation of the matching point is discussed.

Key words: lattice Boltzmann equations, BGK model.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00899_а


DOI: https://doi.org/10.31857/S004446690003540-5

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:11, 1817–1827

Bibliographic databases:

UDC: 517.958
Received: 09.08.2017
Revised: 26.04.2018

Citation: O. V. Ilyin, “A method for simulating the dynamics of rarefied gas based on lattice Boltzmann equations and the BGK equation”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1889–1899; Comput. Math. Math. Phys., 58:11 (2018), 1817–1827

Citation in format AMSBIB
\Bibitem{Ily18}
\by O.~V.~Ilyin
\paper A method for simulating the dynamics of rarefied gas based on lattice Boltzmann equations and the BGK equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 11
\pages 1889--1899
\mathnet{http://mi.mathnet.ru/zvmmf10845}
\crossref{https://doi.org/10.31857/S004446690003540-5}
\elib{https://elibrary.ru/item.asp?id=38641584}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1817--1827
\crossref{https://doi.org/10.1134/S0965542518110052}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452301900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058851606}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10845
  • http://mi.mathnet.ru/eng/zvmmf/v58/i11/p1889

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:88
    References:12

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022