Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 11, Pages 1955–1970 (Mi zvmmf10849)  

Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization

Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur

Penza State University, Penza, Russia

Abstract: An eigenvalue problem for the normal waves of an inhomogeneous regular waveguide is considered. The problem reduces to the boundary value problem for the tangential components of the electromagnetic field in the Sobolev spaces. The inhomogeneity of the dielectric filler and the presence of the spectral parameter in the field-matching conditions necessitate giving a special definition of the solution to the problem. To define the solution, the variational formulation of the problem is used. The variational problem reduces to the study of an operator function nonlinearly depending on the spectral parameter. The properties of the operator function, necessary for the analysis of its spectral properties, are investigated. Theorems on the discreteness of the spectrum and on the distribution of the characteristic numbers of the operator function on the complex plane are proved. Real propagation constants are calculated. Numerical results are obtained using the Galerkin method. The numerical method proposed is implemented in a computer code. Calculations for a number of specific waveguiding structures are performed.

Key words: nonlinear eigenvalue problem, Maxwell's equations, operator function, spectrum, numerical method.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.894.2017/4.6


DOI: https://doi.org/10.31857/S004446690003545-0

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:11, 1887–1901

Bibliographic databases:

UDC: 517.956
Received: 25.10.2017

Citation: Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur, “Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1955–1970; Comput. Math. Math. Phys., 58:11 (2018), 1887–1901

Citation in format AMSBIB
\Bibitem{SmiSmoSne18}
\by Yu.~G.~Smirnov, E.~Yu.~Smolkin, M.~O.~Snegur
\paper Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2018
\vol 58
\issue 11
\pages 1955--1970
\mathnet{http://mi.mathnet.ru/zvmmf10849}
\crossref{https://doi.org/10.31857/S004446690003545-0}
\elib{https://elibrary.ru/item.asp?id=38641653}
\transl
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1887--1901
\crossref{https://doi.org/10.1134/S096554251811012X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452301900016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058856995}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10849
  • http://mi.mathnet.ru/eng/zvmmf/v58/i11/p1955

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:130
    References:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022