Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2018, Volume 58, Number 11, paper published in the English version journal (Mi zvmmf10873)  

Papers published in the English version of the journal

Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation

Pan Wanga, Feng-Hua Qib, Jian-Rong Yanga

a School of Management, Beijing Sport University, Information Road Haidian District, Beijing, China
b School of Information, Beijing Wuzi University, Beijing, China

Abstract: In this paper, we investigate an inhomogeneous fourth-order nonlinear Schrödinger (NLS) equation, generated by deforming the inhomogeneous Heisenberg ferromagnetic spin system through the space curve formalism and using the prolongation structure theory. Via the introduction of the auxiliary function, the bilinear form, one-soliton and two-soliton solutions for the inhomogeneous fourth-order NLS equation are obtained. Infinitely many conservation laws for the inhomogeneous fourth-order NLS equation are derived on the basis of the Ablowitz–Kaup–Newell–Segur system. Propagation and interactions of solitons are investigated analytically and graphically. The effect of the parameters $\mu_1$, $\mu_2$, $\nu_1$ and $\nu_2$ on the soliton velocity are presented. Through the asymptotic analysis, we have proved that the interaction of two solitons is not elastic.

Key words: inhomogeneous generalized fourth-order nonlinear Schrödinger, equation infinitely many conversation laws, auxiliary function, Hirota method, symbolic computation.

References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2018, 58:11, 1856–1864

Bibliographic databases:

Received: 17.10.2017
Language:

Citation: Pan Wang, Feng-Hua Qi, Jian-Rong Yang, “Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation”, Comput. Math. Math. Phys., 58:11 (2018), 1856–1864

Citation in format AMSBIB
\Bibitem{WanQiYan18}
\by Pan~Wang, Feng-Hua~Qi, Jian-Rong~Yang
\paper Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation
\jour Comput. Math. Math. Phys.
\yr 2018
\vol 58
\issue 11
\pages 1856--1864
\mathnet{http://mi.mathnet.ru/zvmmf10873}
\crossref{https://doi.org/10.1134/S0965542518110106}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452301900014}
\elib{https://elibrary.ru/item.asp?id=38893575}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058858611}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10873

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:166
    References:10

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022