Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2019, Volume 59, Number 5, Pages 752–761 (Mi zvmmf10889)  

This article is cited in 2 scientific papers (total in 2 papers)

Input reconstruction in a dynamic system from measurements of a part of phase coordinates

V. I. Maksimovab

a Ural Federal University, Yekaterinburg, 620002 Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990 Russia

Abstract: The unknown input disturbance in a system of nonlinear ordinary differential equations is reconstructed from measurements of some of the state coordinates. A solution algorithm is proposed that is robust to information noises and computational errors. The algorithm is constructed using guaranteed control theory.

Key words: reconstruction, input disturbance, measurements of some coordinates, error estimation.

DOI: https://doi.org/10.1134/S0044466919040124


English version:
Computational Mathematics and Mathematical Physics, 2019, 59:5, 708–717

Bibliographic databases:

UDC: 517.626
Received: 05.05.2018
Revised: 08.10.2018
Accepted:11.03.2019

Citation: V. I. Maksimov, “Input reconstruction in a dynamic system from measurements of a part of phase coordinates”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019), 752–761; Comput. Math. Math. Phys., 59:5 (2019), 708–717

Citation in format AMSBIB
\Bibitem{Mak19}
\by V.~I.~Maksimov
\paper Input reconstruction in a dynamic system from measurements of a part of phase coordinates
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 5
\pages 752--761
\mathnet{http://mi.mathnet.ru/zvmmf10889}
\crossref{https://doi.org/10.1134/S0044466919040124}
\elib{https://elibrary.ru/item.asp?id=37310674}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 5
\pages 708--717
\crossref{https://doi.org/10.1134/S0965542519040122}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000472151500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067626707}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10889
  • http://mi.mathnet.ru/eng/zvmmf/v59/i5/p752

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. R. Andrievsky, B. R. Andrievsky, I. B. Furtat, “Disturbance observers: methods and applications. I. Methods”, Autom. Remote Control, 81:9 (2020), 1563–1610  mathnet  crossref  crossref  isi  elib
    2. M. S. Blizorukova, “O vosstanovlenii neizvestnogo vkhoda sistemy differentsialnykh uravnenii”, Tr. IMM UrO RAN, 27, no. 2, 2021, 59–66  mathnet  crossref  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:52

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021