Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2019, Volume 59, Number 5, Page 859 (Mi zvmmf10897)  

This article is cited in 1 scientific paper (total in 1 paper)

Inverse problem of finding the coefficient of the lowest term in two-dimensional heat equation with Ionkin-type boundary condition

M. I. Ismailova, S. Erkovanb

a Gebze Technical University, Department of Mathematics, 41400, Gebze/Kocaeli, Turkey
b Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, AZ1141 Baku, Azerbaijan

Abstract: We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson's), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method.

Key words: 2D heat equation, Volterra integral equation, Ionkin-type boundary condition, generalized Fourier method, uniform finite difference method, non-uniform finite difference method, numerical integration.

DOI: https://doi.org/10.1134/S0044466919050168


English version:
Computational Mathematics and Mathematical Physics, 2019, 59:5, 791–808

Bibliographic databases:

Received: 13.02.2017
Revised: 25.06.2018
Accepted:11.01.2019
Language:

Citation: M. I. Ismailov, S. Erkovan, “Inverse problem of finding the coefficient of the lowest term in two-dimensional heat equation with Ionkin-type boundary condition”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019), 859; Comput. Math. Math. Phys., 59:5 (2019), 791–808

Citation in format AMSBIB
\Bibitem{IsmErk19}
\by M.~I.~Ismailov, S.~Erkovan
\paper Inverse problem of finding the coefficient of the lowest term in two-dimensional heat equation with Ionkin-type boundary condition
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 5
\pages 859
\mathnet{http://mi.mathnet.ru/zvmmf10897}
\crossref{https://doi.org/10.1134/S0044466919050168}
\elib{https://elibrary.ru/item.asp?id=37310688}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 5
\pages 791--808
\crossref{https://doi.org/10.1134/S0965542519050087}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000472151500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067498328}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10897
  • http://mi.mathnet.ru/eng/zvmmf/v59/i5/p859

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Pyatkov, “O nekotorykh klassakh obratnykh zadach ob opredelenii funktsii istochnikov dlya sistem teplomassoperenosa”, Differentsialnye uravneniya i matematicheskoe modelirovanie, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 188, VINITI RAN, M., 2020, 23–42  mathnet  crossref
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:67

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021