Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2019, Volume 59, Number 6, Pages 984–989 (Mi zvmmf10909)  

Localization of eigenfunctions of the Laplace operator in a domain with a perforated barrier

A. L. Delitsynab

a Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
b Main Scientific Research Test Center of Robotics, Ministry of Defense of the Russian Federation, Moscow, 119001 Russia

Abstract: The localization of eigenfunctions of the Laplace operator in a domain divided by a perforated barrier is proven. The localization takes place with sufficiently small holes in the barrier. In this case, the measure of the barrier can be arbitrarily small.

Key words: localization of eigenfunctions, spectral problems, perforated barrier.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
This work was carried out at the Institute for Information Transmission Problems, Russian Academy of Sciences, and was supported by the Russian Science Foundation (project no. 14-50-00150).


DOI: https://doi.org/10.1134/S0044466919060048


English version:
Computational Mathematics and Mathematical Physics, 2019, 59:6, 936–941

Bibliographic databases:

UDC: 517.956.227
Received: 30.11.2017
Revised: 12.01.2019
Accepted:08.02.2019

Citation: A. L. Delitsyn, “Localization of eigenfunctions of the Laplace operator in a domain with a perforated barrier”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 984–989; Comput. Math. Math. Phys., 59:6 (2019), 936–941

Citation in format AMSBIB
\Bibitem{Del19}
\by A.~L.~Delitsyn
\paper Localization of eigenfunctions of the Laplace operator in a domain with a perforated barrier
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 6
\pages 984--989
\mathnet{http://mi.mathnet.ru/zvmmf10909}
\crossref{https://doi.org/10.1134/S0044466919060048}
\elib{https://elibrary.ru/item.asp?id=37462916}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 6
\pages 936--941
\crossref{https://doi.org/10.1134/S0965542519060046}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000473489900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068553099}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10909
  • http://mi.mathnet.ru/eng/zvmmf/v59/i6/p984

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:72

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021