Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2019, Volume 59, Number 8, Pages 1358–1380 (Mi zvmmf10937)  

The Thomas–Fermi problem and solutions of the Emden–Fowler equation

S. V. Pikulin

Dorodnitsyn Computing Center, Federal Research Center Computer Science and Control, Russian Academy of Sciences, Moscow, 119333 Russia

Abstract: A two-point boundary value problem is considered for the Emden–Fowler equation, which is a singular nonlinear ordinary differential equation of the second order. Assuming that the exponent in the coefficient of the nonlinear term is rational, new parametric representations are obtained for the solution of the boundary value problem on the half-line and on the interval. For the problem on the half-line, a new efficient formula is given for the first term of the well-known Coulson–March expansion of the solution in a neighborhood of infinity, and generalizations of this representation and its analogues for the inverse of the solution are obtained. For the Thomas–Fermi model of a multielectron atom and a positively charged ion, highly efficient computational algorithms are constructed that solve the problem for an atom (that is, the boundary value problem on the half-line) and find the derivative of this solution with any prescribed accuracy at an arbitrary point of the half-line. The results are based on an analytic property of a special Abel equation of the second kind to which the original Emden–Fowler equation reduces, to be precise, the property of partially passing a modified Painlevé test at a nodal singular point.

Key words: Emden–Fowler equation, Thomas–Fermi problem, parametric representation, Abel equation of the second kind, Painlevé test, Fuchs index.

DOI: https://doi.org/10.1134/S0044466919080131


English version:
Computational Mathematics and Mathematical Physics, 2019, 59:8, 1292–1313

Bibliographic databases:

UDC: 517.91
Received: 15.03.2019
Revised: 15.03.2019
Accepted:10.04.2019

Citation: S. V. Pikulin, “The Thomas–Fermi problem and solutions of the Emden–Fowler equation”, Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1358–1380; Comput. Math. Math. Phys., 59:8 (2019), 1292–1313

Citation in format AMSBIB
\Bibitem{Pik19}
\by S.~V.~Pikulin
\paper The Thomas--Fermi problem and solutions of the Emden--Fowler equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 8
\pages 1358--1380
\mathnet{http://mi.mathnet.ru/zvmmf10937}
\crossref{https://doi.org/10.1134/S0044466919080131}
\elib{https://elibrary.ru/item.asp?id=39149030}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 8
\pages 1292--1313
\crossref{https://doi.org/10.1134/S096554251908013X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000487804000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073074537}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf10937
  • http://mi.mathnet.ru/eng/zvmmf/v59/i8/p1358

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:81

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021