RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2008, Volume 48, Number 9, Pages 1607–1618 (Mi zvmmf110)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behavior of solutions to multiplicative control problems for elliptic equations

R. V. Brizitskii, A. S. Savenkova

Institute of Applied Mathematics, Far East Division, Russian Academy of Sciences, ul. Radio 7, Vladivostok, 690041, Russia

Abstract: The problems of optimal multiplicative control for the Helmholtz equation and the diffusion equation are studied. The control function is included multiplicatively in a mixed-type boundary condition specified on the entire domain boundary or its part. For each of the models under study, an iterative method for determining an approximate solution is constructed and theoretically substantiated for sufficiently large values of the regularization parameter.

Key words: optimal control with distributed parameters, impedance, asymptotic behavior, Helmholtz equation, diffusion equation, mass transfer coefficient.

Full text: PDF file (1208 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2008, 48:9, 1570–1580

Bibliographic databases:

Document Type: Article
UDC: 519.632
Received: 19.10.2007

Citation: R. V. Brizitskii, A. S. Savenkova, “Asymptotic behavior of solutions to multiplicative control problems for elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008), 1607–1618; Comput. Math. Math. Phys., 48:9 (2008), 1570–1580

Citation in format AMSBIB
\Bibitem{BriSav08}
\by R.~V.~Brizitskii, A.~S.~Savenkova
\paper Asymptotic behavior of solutions to multiplicative control problems for elliptic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 9
\pages 1607--1618
\mathnet{http://mi.mathnet.ru/zvmmf110}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2500113}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 9
\pages 1570--1580
\crossref{https://doi.org/10.1134/S0965542508090078}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262334900007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52949111282}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf110
  • http://mi.mathnet.ru/eng/zvmmf/v48/i9/p1607

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. V. Brizitskiǐ, A. S. Savenkova, “Inverse extremal problems for the Maxwell equations”, Comput. Math. Math. Phys., 50:6 (2010), 984–992  mathnet  crossref  mathscinet  adsnasa  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:129
    Full text:43
    References:36
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019