Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2020, Volume 60, Number 1, Pages 88–95 (Mi zvmmf11017)  

Calculation of transition probabilities in quantum mechanics with a nonnegative distribution function in the Maple computer algebra system

A. V. Zorinabc, N. P. Tret'yakovacb

a Peoples' Friendship University of Russia, Moscow
b Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Moscow
c Russian State Social University, Moscow

Abstract: In the Maple computer algebra system, an algorithm is implemented for symbolic and numerical computations for finding the transition probabilities for hydrogen-like atoms in quantum mechanics with a nonnegative quantum distribution function (QDF). Quantum mechanics with a nonnegative QDF is equivalent to the standard theory of quantum measurements. However, the presence in it of a probabilistic quantum theory in the phase space gives additional possibilities for calculating and interpreting the results of quantum measurements. The methods of computer algebra seem to be necessary for the relevant calculations. The calculation of the matrix elements of operators is necessary for determining the energy levels, oscillator strengths, and radiation transition parameters for atoms and ions with an open shell. Transition probabilities are calculated and compared with experimental data. They are calculated using the Galerkin method with the Sturm functions of the hydrogen atom as coordinate functions. The verification of the model showed good agreement between the calculated and experimentally measured transition probabilities.

Key words: computer algebra, Maple, quantum mechanics, energy levels, quantization, transition probabilities, hydrogen-like atoms.

DOI: https://doi.org/10.31857/S0044466920010184


English version:
Computational Mathematics and Mathematical Physics, 2020, 60:1, 82–89

Bibliographic databases:

UDC: 519.67
Received: 15.06.2019
Revised: 19.08.2019
Accepted:18.09.2019

Citation: A. V. Zorin, N. P. Tret'yakov, “Calculation of transition probabilities in quantum mechanics with a nonnegative distribution function in the Maple computer algebra system”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 88–95; Comput. Math. Math. Phys., 60:1 (2020), 82–89

Citation in format AMSBIB
\Bibitem{ZorTre20}
\by A.~V.~Zorin, N.~P.~Tret'yakov
\paper Calculation of transition probabilities in quantum mechanics with a nonnegative distribution function in the Maple computer algebra system
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 88--95
\mathnet{http://mi.mathnet.ru/zvmmf11017}
\crossref{https://doi.org/10.31857/S0044466920010184}
\elib{https://elibrary.ru/item.asp?id=41806920 }
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 82--89
\crossref{https://doi.org/10.1134/S0965542520010157}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000521749800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082621927}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf11017
  • http://mi.mathnet.ru/eng/zvmmf/v60/i1/p88

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:17

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021