Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2020, Volume 60, Number 1, Pages 118–119 (Mi zvmmf11021)  

High accuracy trigonometric approximations of the real Bessel functions of the first kind

A. Cuyta, Wen-shin Leeab, Min Wuc

a Universiteit Antwerpen, Dept. of Mathematics and Computer Science, Middelheimlaan 1, B-2020 Antwerpen, Belgium
b University of Stirling, Computing Science and Mathematics, Stirling FK9 4LA, Scotland, UK
c East China Normal University, School of Computer Science and Software Engineering, Shanghai Key Laboratory of Trustworthy Computing, Shanghai 200062, P.R. China

Abstract: We construct high accuracy trigonometric interpolants from equidistant evaluations of the Bessel functions ${{J}_{n}}(x)$ of the first kind and integer order. The trigonometric models are cosine or sine based depending on whether the Bessel function is even or odd. The main novelty lies in the fact that the frequencies in the trigonometric terms modelling ${{J}_{n}}(x)$ are also computed from the data in a Prony-type approach. Hence the interpolation problem is a nonlinear problem. Some existing compact trigonometric models for the Bessel functions ${{J}_{n}}(x)$ are hereby rediscovered and generalized.

DOI: https://doi.org/10.31857/S0044466920010093


English version:
Computational Mathematics and Mathematical Physics, 2020, 60:1, 119–127

Bibliographic databases:

UDC: 519.651
Received: 31.07.2019
Revised: 30.08.2019
Accepted:18.09.2019
Language:

Citation: A. Cuyt, Wen-shin Lee, Min Wu, “High accuracy trigonometric approximations of the real Bessel functions of the first kind”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 118–119; Comput. Math. Math. Phys., 60:1 (2020), 119–127

Citation in format AMSBIB
\Bibitem{CuyLeeWu20}
\by A.~Cuyt, Wen-shin~Lee, Min~Wu
\paper High accuracy trigonometric approximations of the real Bessel functions of the first kind
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 118--119
\mathnet{http://mi.mathnet.ru/zvmmf11021}
\crossref{https://doi.org/10.31857/S0044466920010093}
\elib{https://elibrary.ru/item.asp?id=41806927}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 119--127
\crossref{https://doi.org/10.1134/S0965542520010078}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000521749800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082597005}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf11021
  • http://mi.mathnet.ru/eng/zvmmf/v60/i1/p118

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:9

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021