Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2020, Volume 60, Number 1, Pages 159–166 (Mi zvmmf11026)  

Simulation of dynamical processes in long Josephson junctions: computation of current-voltage characteristics and round error growth estimation for a second-order difference scheme

S. I. Serdyukova

Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia

Abstract: The fourth-order Runge–Kutta method is commonly used to compute the current-voltage characteristics of stacks of Josephson junctions. The calculations are performed for long time intervals, and the results are updated four times at each time step. To reduce the calculation time, this study suggests using a second-order explicit scheme instead of the Runge–Kutta method. Good results are obtained in particular calculations. For all $n$, estimates of $\|{{{G}^{n}}}\|$ ensuring the bounded growth of the round errors are proved, where $G$ is the layer-to-layer transition operator. A specific feature of the scheme under consideration is that its coefficients depend not only on the grid step size ratio $\gamma=\tau{/}h$ but also on $\tau $ ($\tau{ and }h$ are the grid step sizes in $t$ and $x$). It is proved that, for all $\gamma\leqslant 1$, the eigenvalues of the characteristic matrix are within the unit disc ($|{{{\lambda}_{j}}({{e}^{{i\phi }}})}|\leqslant 1$ for all $0\leqslant\phi\leqslant 2\pi$) at a distance $O(\tau)$ from the unit circle. The estimation method developed in this study can be used in studying other numerical methods.

Key words: long Josephson junctions, calculation of current-voltage characteristics, finite-difference schemes, Cauchy problem, estimate of the growth rate for the layer-to-layer transition operator.

DOI: https://doi.org/10.31857/S0044466919120184


English version:
Computational Mathematics and Mathematical Physics, 2020, 60:1, 171–178

Bibliographic databases:

UDC: 517.929
Received: 01.07.2019
Revised: 01.07.2019
Accepted:18.09.2019

Citation: S. I. Serdyukova, “Simulation of dynamical processes in long Josephson junctions: computation of current-voltage characteristics and round error growth estimation for a second-order difference scheme”, Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 159–166; Comput. Math. Math. Phys., 60:1 (2020), 171–178

Citation in format AMSBIB
\Bibitem{Ser20}
\by S.~I.~Serdyukova
\paper Simulation of dynamical processes in long Josephson junctions: computation of current-voltage characteristics and round error growth estimation for a second-order difference scheme
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 1
\pages 159--166
\mathnet{http://mi.mathnet.ru/zvmmf11026}
\crossref{https://doi.org/10.31857/S0044466919120184}
\elib{https://elibrary.ru/item.asp?id=41806934}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 1
\pages 171--178
\crossref{https://doi.org/10.1134/S0965542519120157}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000521749800017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082605582}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf11026
  • http://mi.mathnet.ru/eng/zvmmf/v60/i1/p159

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021